admin / 30.06.2018

Нейросеть

В последнее время решений с использованием нейронных сетей становится весьма немало: приложения, сервисы, программы используют такого рода сети для ускорения решения различных задач. Но что же представляет из себя нейронная сеть? Редакция AIN.UA решила разобраться что это за популярная технология, откуда она взялась и как работает.

От биологии к технологии

Назвать нейросети свежим технологическим веянием сложно. Первые поиски научной мысли в этой области датируются серединой XX века, когда ведущие умы эпохи решили, что неплохо было бы соорудить компьютер, основываясь на естественных достижениях матушки-природы. В частности, скопировав некоторые принципы работы человеческого мозга.

Создание технического аналога нашего природного биокомпьютера проходило непросто, переживая периоды повышенного интереса и упадка. Это объясняется тем, что уровень технического прогресса 1950-х, когда все началось, не поспевал за полетом научной мысли: устройство первых нейросетей не позволяло полностью им раскрыть свой потенциал.

И как же оно работает

Среднестатистический мозг человека состоит приблизительно из 86 миллиардов нейронов, связанных в единую систему для принятия, обработки и дальнейшей передачи данных. В этой сети каждый нейрон выступает чем-то вроде микропроцессора к которому тянутся дендриты — отростки для принятия импульсов. Также есть выход в виде аксона, который передает полученные импульсы другим нейронам.

Искусственно созданная нейросеть (ИНС) имитирует процесс обработки информации биологического аналога и представляет собой массив минипроцессоров, разделенный на три группы:

  • Точки входа (сенсоры) — нейроны, через которые в ИНС поступает информация для обработки.
  • Точки выхода (реагирующие) — нейроны, через которые ИНС выдает конечный результат.
  • Скрытые нейроны (ассоциативные) — рабочий массив нейронов, расположенный между точками входа и выхода.

Основная работа по обработке информации происходит на уровне скрытых (ассоциативных) нейронов. Их массив упорядочен в несколько слоев и чем больше их, тем более точную обработку данных в состоянии произвести ИНС.

Схема перцептрона — простейшей однослойной нейросети

Запрограммировать нельзя обучить

Характерной особенностью нейросетей является тот факт, что их не программируют, а обучают. Исходя из этого, ИНС делятся на три категории — обучаемые, самообучающиеся, а также ИНС смешанного типа.

Обучаемая нейросеть, как познающий мир ребенок, постоянно требует к себе пристального внимания и фидбека от своего создателя. Работая с ней, исследователь предоставляет ИНС массив данных, после чего предлагает ей решить задачу с предопределенным ответом. Оба решения — изначально верное и предложенное нейросетью, сравниваются. Если разница между ними превышает допустимый коэффициент ошибки, исследователь проводит корректировку нейросети, после чего процесс обучения возобновляется.

Самообучаемые ИНС познают мир без репетиторов, используя для своего обучения заданный алгоритм. Получив задачу, нейросеть сама ищет ответ, фиксирует допущенные ошибки и, при необходимости, «откатывается» по цепочке ассоциативных нейронов до последнего верного шага, чтобы начать заново.

На видео ниже — результат 24-часового самообучения ИНС игре в Super Mario, где перед ней была установлена цель достичь максимального количества очков, которые начисляются во время перемещения по уровню. Чем дальше удалось ей пройти — тем выше был финальный балл. В качестве входов исследователь использовал элементы карты и противников, а в качестве выходов — доступные игроку действия.

А вот эта же, немного адаптированная ИНС осваивается за рулеем другой игры — Mario Kart.

Вы и сами можете попробовать себя в роли испытателя нейросети при помощи простой , имитирующей движение автомобилей с автопилотом. Машинки движутся под управлением двух нейросетей и подчиняются базовым правилам — продолжать движение вперед и избегать столкновения.

Ваша задача — создавать для них препятствия и смотреть, как автопилот успешно с ними справляется, а также морально готовиться к появлению похожих беспилотников от Uber и конкурирующих компаний на улицах своего города.

В основе всего — алгоритмы, созданные природой

Говоря о нейросетях и их обучении, нельзя не упомянуть такое природное явление, как муравьиный алгоритм, увидеть который вы можете буквально во дворе собственного дома.

При перемещении в поисках пищи от гнезда и обратно муравьи постоянно ищут максимально эргономичный путь, а в случае возникновения помех адаптируют свой маршрут под изменившуюся ситуацию. Во время движения муравей оставляет за собой след из специального феромона. Последующие охотники за едой идут по оставленному первопроходцем маршруту, также насыщая его биологическим «маячком».

Предположим, что на пути к еде у муравьев находится преграда, которую можно обойти с правой или с левой стороны. С левой стороны расстояние до источника пищи короче. Несмотря на то, что при первых итерациях муравьи будут проходить по обе стороны преграды, насыщение левой феромоном будет происходить быстрее за счет краткости дистанции.

Что это значит? На более поздних итерациях левый маршрут, как наиболее эргономичный станет единственным использующимся при движении муравьев-добытчиков. Схожим образом происходит и процесс обучения в искусственной нейросети.

Почему ИНС — это все же не ИИ

Насколько бы «умна» не была нейросеть — она остается не искусственным интеллектом, а инструментом для задач по классификации данных. Нас, конечно, может поражать, как поисковик распознает определенную комбинацию слов, а после, на ее основании, подбирает изображения с нужными нам котиками, однако это не результат умственной деятельности нейрокомпьютера, а всего лишь синергия нескольких классификаторов.

Сеть нейронов в человеческом мозге, несмотря на упорную веру каждого старшего поколения в деградацию младшего, остается намного сложнее, чем формальная структура ИНС , а также за счет огромного числа и вариативности связей способна решать задачи нестандартным путем, вне очерченных правилами и формулами паттернов.

Говоря проще, Александр Македонский и сейчас смог бы разрубить Гордиев узел. А нейросеть — нет.

Ранее AIN.UA сообщал о немецком художнике, который разработал принт для одежды, призванный защитить людей от распознавания лиц через нейросети.


Если вы хотите получать новости на Facebook, нажмите «нравится»

Ссылка на источник »Назад к блогу



Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть — это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному — ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть — это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры — наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 — первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей — это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются.

Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский — одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом: 

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI — программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.

Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana.

Искусственная нейронная сеть

Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать — полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием — пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик.

Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S.Зинаида Фолс — нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

«Это»

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

.

Мир современных медиа — GENEFIS.RU > Авторские статьи > Нейросети для чайников

Нейросети для чайников

Дата: 01.09.2016      Просмотров: 36721      Теги:

Сегодня на каждом углу то тут, то там кричат о пользе нейросетей. А вот что это такое, действительно понимают единицы. Если обратиться за объяснениями к Википедии, голова закружится от высоты понастроенных там цитаделей ученых терминов и определений. Если вы далеки от генной инженерии, а путанный сухой язык вузовских учебников вызывает только потерянность и никаких идей, то попробуем разобраться сообща в проблеме нейросетей.

Чтобы разобраться в проблеме, нужно узнать первопричину, которая кроется совсем на поверхности. Вспоминая Сару Коннор, с содроганием сердца понимаем, что некогда пионеры компьютерных разработок Уоррен Мак-Каллок и Уолтер Питтс преследовали корыстную цель создания первого Искусственного Интеллекта.

Нейронные сети – это электронный прототип самостоятельно обучаемой системы. Как и ребенок, нейросеть впитывает в себя информацию, пережевывает её, приобретает опыт и учится. В процессе обучения такая сеть развивается, растет и может делать собственные выводы и самостоятельно принимать решения.

Если мозг человека состоит из нейронов, то условно договоримся, что электронный нейрон – это некая воображаемая коробочка, у которой множество входных отверстий, а выходное – одно.

Внутренний алгоритм нейрона определяется порядок обработки и анализа полученной информации и преобразования её в единый полезный ком знаний. В зависимости от того, насколько хорошо работают входы и выходы, вся система или соображает быстро, или, наоборот, может тормозить.

Важно: Как правило, в нейронных сетях используется аналоговая информация.

Повторимся, что входных потоков информации (по-научному эту связь первоначальной информации и наш “нейрон” называют синапсами) может быть множество, и все они носят разных характер и имеют неравную значимость. Например, человек воспринимает окружающий мир через органы зрения, осязания и обоняния. Логично, что зрение первостепеннее обоняния. Исходя из разных жизненных ситуаций мы используем определенные органы чувств: в полной темноте на первый план выходят осязание и слух. Синапсы у нейросетей по такой же аналогии в различных ситуациях будут иметь разную значимость, которую принято обозначать весом связи. При написании кода устанавливается минимальный порог прохождения информации. Если вес связи выше заданного значения, то результат проверки нейроном положительный (и равен единице в двоичной системе), если меньше – то отрицательный. Логично, что, чем выше задана планка, тем точнее будет работа нейросети, но тем дольше она будет проходить.

Чтобы нейронная сеть работала корректно, нужно потратить время на её обучение – это и есть главное отличие от простых программируемых алгоритмов. Как и маленькому ребенку, нейросети нужна начальная информационная база, но если написать первоначальный код корректно, то нейросеть уже сама сможет не просто делать верный выбор из имеющейся информации, но и строить самостоятельные предположения.

При написании первичного кода объяснять свои действия нужно буквально по пальцам. Если мы работаем, например, с изображениями, то на первом этапе значение для нас будет иметь её размер и класс. Если первая характеристика подскажет нам количество входов, то вторая поможет самой нейросети разобраться с информацией.

Нейросети: что это такое и как работает

В идеале, загрузив первичные данные и сопоставив топологию классов, нейросеть далее уже сама сможет классифицировать новую информацию. Допустим, мы решили загрузить изображение 3х5 пикселей. Простая арифметика нам подскажет, что входов будет: 3*5=15. А сама классификация определит общее количество выходов, т.е. нейронов. Другой пример: нейросети необходимо распознать букву “С”. Заданный порог – полное соответствие букве, для этого потребуется один нейрон с количеством входов, равных размеру изображения.

Допустим, что размер будет тот же 3х5 пикселей. Скармливая программе различные картинки букв или цифр, будем учить её определять изображение нужного нам символа.

Как и в любом обучении, ученика за неправильный ответ нужно наказывать, а за верный мы ничего давать не будем. Если верный ответ программа воспринимает как False, то увеличиваем вес входа на каждом синапсе. Если же, наоборот, при неверном результате программа считает результат положительным или True, то вычитаем вес из каждого входа в нейрон. Начать обучение логичнее со знакомства с нужным нам символом. Первый результат будет неверным, однако немного подкорректировав код, при дальнейшей работе программа будет работать корректно. Приведенный пример алгоритма построения кода для нейронной сети называется парцетроном.

Бывают и более сложные варианты работы нейросетей с возвратом неверных данных, их анализом и логическими выводами самой сети. Например, онлайн-предсказатель будущего вполне себе запрограммированная нейросеть. Такие проги способны обучаться как с учителем, так и без него, и носят название адаптивного резонанса. Их суть заключается в том, что у нейронов уже есть свои представления об ожидании о том, какую именно информацию они хотят получить и в каком виде. Между ожиданием и реальностью проходит тонкий порог так называемой бдительности нейронов, которая и помогает сети правильно классифицировать поступающую информацию и не упускать ни пикселя. Фишка АР нейросети в том, что учится она самостоятельно с самого начала, самостоятельно определяет порог бдительности нейронов. Что, в свою очередь, играет роль при классифицировании информации: чем бдительнее сеть, тем она дотошнее.

Самые азы знаний о том, что такое нейросети, мы получили. Теперь попробуем обобщить полученную информацию. Итак, нейросети – это электронный прототип мышлению человека. Они состоят из электронных нейронов и синапсов – потоков информации на входе и выходе из нейрона. Программируются нейросети по принципу обучения с учителем (программистом, который закачивает первичную информацию) или же самостоятельно (основываясь на предположения и ожидания от полученную информацию, которую определяет всё тот же программист). С помощью нейросети можно создать любую систему: от простого определения рисунка на пиксельных изображениях до психодиагностики и экономической аналитики.


Если вас не заметили, вы остаетесь ни с чем. Вам нужно чтобы вас заметили, но без криков и обмана.

Лео Бернетт

Стоит посетить

Реклама на сайте:приобретается здесь.


#Интернавт

Мир современных медиа — GENEFIS.RU > Авторские статьи > Нейросети для чайников

Нейросети для чайников

Дата: 01.09.2016      Просмотров: 36718      Теги:

Сегодня на каждом углу то тут, то там кричат о пользе нейросетей. А вот что это такое, действительно понимают единицы.

Пишем свою нейросеть: пошаговое руководство

Если обратиться за объяснениями к Википедии, голова закружится от высоты понастроенных там цитаделей ученых терминов и определений. Если вы далеки от генной инженерии, а путанный сухой язык вузовских учебников вызывает только потерянность и никаких идей, то попробуем разобраться сообща в проблеме нейросетей.

Чтобы разобраться в проблеме, нужно узнать первопричину, которая кроется совсем на поверхности. Вспоминая Сару Коннор, с содроганием сердца понимаем, что некогда пионеры компьютерных разработок Уоррен Мак-Каллок и Уолтер Питтс преследовали корыстную цель создания первого Искусственного Интеллекта.

Нейронные сети – это электронный прототип самостоятельно обучаемой системы. Как и ребенок, нейросеть впитывает в себя информацию, пережевывает её, приобретает опыт и учится. В процессе обучения такая сеть развивается, растет и может делать собственные выводы и самостоятельно принимать решения.

Если мозг человека состоит из нейронов, то условно договоримся, что электронный нейрон – это некая воображаемая коробочка, у которой множество входных отверстий, а выходное – одно. Внутренний алгоритм нейрона определяется порядок обработки и анализа полученной информации и преобразования её в единый полезный ком знаний. В зависимости от того, насколько хорошо работают входы и выходы, вся система или соображает быстро, или, наоборот, может тормозить.

Важно: Как правило, в нейронных сетях используется аналоговая информация.

Повторимся, что входных потоков информации (по-научному эту связь первоначальной информации и наш “нейрон” называют синапсами) может быть множество, и все они носят разных характер и имеют неравную значимость. Например, человек воспринимает окружающий мир через органы зрения, осязания и обоняния. Логично, что зрение первостепеннее обоняния. Исходя из разных жизненных ситуаций мы используем определенные органы чувств: в полной темноте на первый план выходят осязание и слух. Синапсы у нейросетей по такой же аналогии в различных ситуациях будут иметь разную значимость, которую принято обозначать весом связи. При написании кода устанавливается минимальный порог прохождения информации. Если вес связи выше заданного значения, то результат проверки нейроном положительный (и равен единице в двоичной системе), если меньше – то отрицательный. Логично, что, чем выше задана планка, тем точнее будет работа нейросети, но тем дольше она будет проходить.

Чтобы нейронная сеть работала корректно, нужно потратить время на её обучение – это и есть главное отличие от простых программируемых алгоритмов. Как и маленькому ребенку, нейросети нужна начальная информационная база, но если написать первоначальный код корректно, то нейросеть уже сама сможет не просто делать верный выбор из имеющейся информации, но и строить самостоятельные предположения.

При написании первичного кода объяснять свои действия нужно буквально по пальцам. Если мы работаем, например, с изображениями, то на первом этапе значение для нас будет иметь её размер и класс. Если первая характеристика подскажет нам количество входов, то вторая поможет самой нейросети разобраться с информацией. В идеале, загрузив первичные данные и сопоставив топологию классов, нейросеть далее уже сама сможет классифицировать новую информацию. Допустим, мы решили загрузить изображение 3х5 пикселей. Простая арифметика нам подскажет, что входов будет: 3*5=15. А сама классификация определит общее количество выходов, т.е. нейронов. Другой пример: нейросети необходимо распознать букву “С”. Заданный порог – полное соответствие букве, для этого потребуется один нейрон с количеством входов, равных размеру изображения.

Допустим, что размер будет тот же 3х5 пикселей. Скармливая программе различные картинки букв или цифр, будем учить её определять изображение нужного нам символа.

Как и в любом обучении, ученика за неправильный ответ нужно наказывать, а за верный мы ничего давать не будем. Если верный ответ программа воспринимает как False, то увеличиваем вес входа на каждом синапсе. Если же, наоборот, при неверном результате программа считает результат положительным или True, то вычитаем вес из каждого входа в нейрон. Начать обучение логичнее со знакомства с нужным нам символом. Первый результат будет неверным, однако немного подкорректировав код, при дальнейшей работе программа будет работать корректно.

Приведенный пример алгоритма построения кода для нейронной сети называется парцетроном.

Бывают и более сложные варианты работы нейросетей с возвратом неверных данных, их анализом и логическими выводами самой сети. Например, онлайн-предсказатель будущего вполне себе запрограммированная нейросеть. Такие проги способны обучаться как с учителем, так и без него, и носят название адаптивного резонанса. Их суть заключается в том, что у нейронов уже есть свои представления об ожидании о том, какую именно информацию они хотят получить и в каком виде. Между ожиданием и реальностью проходит тонкий порог так называемой бдительности нейронов, которая и помогает сети правильно классифицировать поступающую информацию и не упускать ни пикселя. Фишка АР нейросети в том, что учится она самостоятельно с самого начала, самостоятельно определяет порог бдительности нейронов. Что, в свою очередь, играет роль при классифицировании информации: чем бдительнее сеть, тем она дотошнее.

Самые азы знаний о том, что такое нейросети, мы получили. Теперь попробуем обобщить полученную информацию. Итак, нейросети – это электронный прототип мышлению человека. Они состоят из электронных нейронов и синапсов – потоков информации на входе и выходе из нейрона. Программируются нейросети по принципу обучения с учителем (программистом, который закачивает первичную информацию) или же самостоятельно (основываясь на предположения и ожидания от полученную информацию, которую определяет всё тот же программист). С помощью нейросети можно создать любую систему: от простого определения рисунка на пиксельных изображениях до психодиагностики и экономической аналитики.


Если вас не заметили, вы остаетесь ни с чем. Вам нужно чтобы вас заметили, но без криков и обмана.

Лео Бернетт

Стоит посетить

Реклама на сайте:приобретается здесь.


#Интернавт

Области практического применения искусственных нейронных сетей

Следующий текст с небольшими изменениями и осовременивающими дополнениями воспроизведен из книги: Ежов А.А, Шумский С.А.

ООО «Нейронные Технологии»

Нейрокомпьютинг и его применение в экономике и бизнесе.

В каждой предметной области при ближайшем рассмотрении можно найти постановки задач для нейронных сетей. Вот список отдельных областей, где решение такого рода задач имеет практическое значение уже сейчас.

  • Экономика и бизнес: прогнозирование временных рядов (курсов валют, цен на сырьё, спроса, объемов продаж,..), автоматический трейдинг (торговля на валютной, фондовой или товарной бирже), оценка рисков невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление переоцененных и недооцененных компаний, рейтингование, оптимизация товарных и денежных потоков, считывание и распознавание чеков и документов, безопасность транзакций по пластиковым картам.
  • Медицина и здравоохранение: постановка диагноза больному (диагностика заболеваний), обработка медицинских изображений, очистка показаний приборов от шумов, мониторинг состояния пациента, прогнозирование результатов применения разных методов лечения, анализ эффективности проведённого лечения.
  • Авионика: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета, беспилотные летательные аппараты.
  • Связь: сжатие видеоинформации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
  • Интернет: ассоциативный поиск информации, электронные секретари и автономные агенты в интернете, фильтрация и блокировка спама, автоматическая рубрикация сообщений из новостевых лент, адресные реклама и маркетинг для электронной торговли, распознавание captcha.
  • Автоматизация производства: оптимизация режимов производственного процесса, контроль качества продукции, мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций.
  • Робототехника: распознавание сцены, объектов и препятствий перед роботом, прокладка маршрута движения, управление манипуляторами, поддержание равновесия.
  • Политологические и социологические технологии: предсказание результатов выборов, анализ опросов, предсказание динамики рейтингов, выявление значимых факторов, кластеризация электората, исследование и визуализация социальной динамики населения.
  • Безопасность, охранные системы: распознавание лиц; идентификация личности по отпечаткам пальцев, голосу, подписи или лицу; распознавание автомобильных номеров, мониторинг информационных потоков в компьютерной сети и обнаружение вторжений, обнаружение подделок, анализ данных с видеодатчиков и разнообразных сенсоров, анализ аэрокосмических снимков.
  • Ввод и обработка информации: распознавание рукописных текстов, отсканированных почтовых, платежных, финансовых и бухгалтерских документов; распознавание речевых команд, речевой ввод текста в компьютер.
  • Геологоразведка: анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
  • Компьютерные и настольные игры: создание нейроигроков в шашки и шахматы (подтверждённые игрой с людьми рейтинги — на уровне мастеров и международных мастеров), выигрыш в Го у чемпионов Европы и мира, в среднем лучшее, чем у человека, прохождение почти полусотни старых классических игр с Атари (всякие там Понги, Пакманы,..).

Обилие приведенных выше областей применения нейронных сетей — не рекламный трюк. Просто нейросети — это гибкий и мощный набор инструментов решения разнообразных задач обработки и анализа данных.

У Вас есть подобные задачи? Давайте обсудим по электронной почте tsar@neuropro.ru возможности их решения.

далее: нейронные сети — как и где использовать.

NeuroPro

нейронные сети,
методы анализа данных:
от исследований до разработок и внедрений

Главная
Услуги
Нейронные сети
• базовые идеи
• возможности
• преимущества

• как использовать
• программирование
• точность решения
• НС и ИИ
Программы
Статьи
Блог
Об авторе / контакты

FILED UNDER : IT

Submit a Comment

Must be required * marked fields.

:*
:*