admin / 08.08.2018

Дгу с авр

Оборудование для ДГУ, ДЭС

Фото продукции изготовленной на комплектующих отечественного производства и импортных комплектующих

Для увеличения изображения кликнуть по картинке

По требованиям заказчика производим доработку шкафов управления. На рисунке слева показано фото щита управления дизельной электростанции доработанной по требованиям заказчика. На фото в середине контроллер генераторной установки марки InteliLite NT AMF 25 применяемый для изготовления щитов управления ДЭС и ДГУ.
На фото справа АВР для двух вводов, один из которых ввод c ДГУ, команда на запуск и остановку ДГУ производится от шкафа АВР, ток 125А, мощность 75 кВа.
Фото шкафов управления для дизельной электростанции на номинальный ток 500А и 800А. Автоматические выключатели производства Контактор ВА50-43Про на 630а и ВА50-43Про на 1100А.

Содержание

Особенности АВР для ДГУ

Автоматический ввод резерва с применением ДГУ можно построить с применением специального контроллера (смотрите выше по тесту с фото), или на отдельных элементах. Для более удобной эксплуатации применяется контроллер и шкаф АВР, иногда называется ЩАВР. Команда на запуск ДГУ подается на контроллер (см.фото ниже).
При построении схемы АВР для электростанции учитывается особенности:
1. Приоритет работы от основного ввода.
2. После пропадания напряжения команда на запуск ДЭС должна подаваться с выдержкой времени, т.к. напряжение может восстановиться и команду придется снимать, что не очень хорошо скажется на работе двигателя. Регулировка задержки можно устанавливаться пользователем в пределах от единиц до несколько десятков секунд.
3. После выхода на режим ДЭС, а это прогрев, установление нормального давления и готовность к принятию нагрузки, включается контактор ДЭС, задержка включения тоже регулируемая, от единиц до нескольких десятков секунд, осуществляется пользователем.
4. Порой требуется, при восстановлении напряжения, отключить ДЭС, но осуществить не сразу, а вначале отключается контактор в АВР подающий питание от станции, далее двигатель работает без нагрузки определенное время, пока не понизится температура до нужного значения.
5. Команда на ПУСК может подаваться постоянно (замкнутые контакторы), а иногда требуется подавать команду "Пуск" в течении 2-3 секунд, и если запуск не произошел, то через 5-30 секунд повторить цикл заново, таких циклов обычно один — четыре, соответственно команда "СТОП" подается отдельно с АВР.
6. Необходимо учитывать что у ДГУ, как правило, система четырехпроводная TN-C. Согласно ПУЭ, издание 7, в вводном устройстве должна быть система TN-C-S, т.е. PE и N разделены. Таким образом силовые линии питания идущие с АВР к потребителям пятипроводные, но в некоторых конкретных случаях возможно и другое решение.
7. Особо следует отметить остановку двигателя генератора, команда на остановку может быть с задержкой до 5-7 минут, до достижения необходимой температуры и это время зависит от мощности ДГУ и др.

АВР ДГУ

Шкаф АВР на два ввода с ДГУ ток 100А, мощность 60 кВа, на контакторах с механической блокировкой. Авр на 160А, два ввода для работы с дизельной станцией, комплектация ABB, Schneider, LS
Серия шкафов АВР на два ввода с ДГУ ток 80А в процессе изготовления, предназначены для работы с дизельными станциями.
Вариант шкафа АВР на два ввода с ДГУ, ток 200А Шкаф АВР на два ввода с ДГУ, ток 630А Шкаф АВР на два ввода с ДГУ, ток 800А

Алгоритм работы АВР и ДЭС

Ниже приведен алгоритм работы АВР с двумя вводами( одни вводом ) и ДЭС.
Данный щит управления был разработан для объекта Сочи,это ВРУ-21Л, на этом примере мы остановимся о работе АВР управляемый контроллером двумя вводами и ДЭС.
На фото слева ВРУ с АВР в процессе изготовления, на фото в середине передняя панель управления, на фото справа диаграммы работы: верхняя при неудачном запуске ДГУ, нижняя при удачном запуске ДГУ.
Работа АВР с ДГУ
При пропадании напряжения (пропадание фазы, увеличение или уменьшение напряжение от установленного значения ) на вводах 1 и 2, реле контроля напряжения KV1 и KV2 отключаются и контакты исполнительного встроенного реле становятся в исходное положение, через время задержки Т1 (5с) с выхода контроллера подается периодически сигнал запуска (прокрутка)ДГУ длительностью 10с в течении 52 сек.
Если ДЭС не запустится в течении этого времени (52с) контроллер выдает сигнал АВАРИЯ ДЭС, пусковой цикл прекращается.
Питание контроллера при отсутствии напряжения 220 осуществляется от АКБ ИБП.
При восстановлении напряжения на вводе 1 (2), контактор питания ВРУ от ДГУ отключается, сигнал СТОП подается с задержкой на ДГУ, он будет работать 15с на холостом ходу для охлаждения.
Управление порядком включения и переключения АВР обеспечивает контроллер Zelio Logic производства Schneider Electric.
Т1-время задержки 5с, после пропадания напряжения на основном (основных) вводах.
Т2-цикл запуска 52с
Т3-время Пуска ДЭС (прокрутка), 10с
Т4-время паузы между пусками ДЭС, 10с
Т5-время задержки 3с для включения сигнализации "АВАРИЯ ДЭС"
Механическая блокировка контакторов в АВР

Довольно часто применяется в схемах АВР электронная и механическая блокировка контакторов. Когда имеется один основной ввод, а второй от ДЭС, то блокировка между контакторами применяется в стандартном исполнении и проблем не возникает. В случае однолинейной схемы на два ввода и один ввод от ДЭС, взаимная механическая блокировка трех выключателей может применяться при применении выкатных автоматов в литом корпусе (блокировка тросиками подвижной и фиксированной частей ), к примеру производства АВВ, но это экономически целесообразно на больших токах, а что делать в случае не очень больших?
Рекомендуется использовать схему с четырьмя контакторами и попарно включить механическую блокировку.
Ниже показан вариант изготовления АВР ДГУ 1250А, применен реверсивный рубильник Q1 производства ABB. При переводе реверсивного рубильника Q1 из положения "I" в положение "II", и обратно, он проходит нулевое положение, таким образом исключается встречное включение вводов.

АВР с применением контроллера для ДЭС

Часто возникает вопрос, как можно использовать контроллер дизельной станции для управления, так как в нем имеются необходимые функции для управления внешними контакторами…
На фото ниже вариант исполнения на ток 1250А с использованием контроллера дизельной электростанции.

Фото АВР на 1250А, фрагмент монтажа элементов схемы, медная шина для подключения вводов. Управление моторизированным приводом осуществляется с панели управления двигателя Perkins, на которой установлен контроллер.
Питание нагрузки при дистанционном/местном управлении осуществляется от основного (сеть ~380 В 50 Гц) или резервного (ДГУ) ввода, путем включения реверсивного рубильника в соответствующее положение (положение "I" — основной ввод, положение "II" — резервный ввод).

АВР на четыре ввода

ВРУ с АВР на четыре ввода: два сетевых ввода на ток по 600А и два ввода по 400А от ДГУ, выполнен на автоматических выключателях с моторным приводом, подключается нагрузка гарантированного питания. В случае запуска ДГУ питание негарантированной нагрузки отключается.
Кабельные вводы входящие и отходящие подключаются сверху, каждый кабельный ввод выполняется 2-мя кабелями СИП по 150 мм кв. с возможностью доумощнения вводов и прокладки 3-й линии.
Очередность приоритета работы вводов установлена в порядке:
— Ввод №1 от ТП – основной;
— Ввод №2 от ТП – резервный;
— Ввод №3 от ДГУ – основной;
— Ввод №4 от ДГУ – резервный.

Схема щита ВРУ с АВР на четыре ввода, два из них ввода от ДГУ.
Сборка АВР для ДГУ

Различия схем подключения электрогенератора к домашней сети: особенности каждой схемы, область применения, выбор оборудования + основные ошибки и советы профессиональных электриков

Концепция частных домов основана на максимальной независимости. Электричество не является исключением. Большинство владельцев частных строений начинают задумываться о резерве электроэнергии из альтернативных источников.

Отсутствие электричества или регулярные сбои в подаче вынуждают многих владельцев частных домов и дач предусматривать резервное питание. Однако встает вопрос правильного подключения генератора к домашней сети. В первую очередь стоит безопасность. Необходимо четко понимать, что допустимо, а что категорически запрещено.

Основные ошибки

Существует ряд ошибок, которые допускают неопытные «электрики».

Нельзя подключать мини-электростанцию к домашней розетке, когда автоматы в щитке  ввода отключены. При редких перебоях в электроэнергии становится традицией «подкидывать» кабель бензогенератора к ближайшему разъему через штепсель. Большинство рассуждают: зачем обустраивать резервный ввод, если свет пропадает 2-3 раза за год. Русский человек живет по принципу: мужик не перекреститься пока гром не грянет. Электрики не рекомендуют даже задумываться о подключении генератора через розетку по следующим причинам:

  • В линии отсутствует отдельный автомат.
  • Розеточная группа не способна принять магистральную нагрузку.
  • Срабатывает человеческий фактор: владельцы забывают отключить вводной автомат, что приводит к перегрузкам, срабатыванию защиты.
  • Существует вероятность «встречки»: электричество начинает поступать с общей сети при работающем генераторе. Агрегат выходит из строя.
  • Не стоит пренебрегать комфортной и надежной системой эксплуатации узла. Лучше изучить схемы подключения генератора к домашней сети и подобрать оптимальный вариант. Это позволит сохранить оборудование и электросеть.

Генератор должен иметь мощность несколько раз меньше пропускной способности проводки. К примеру, значение для розетки – 3,5 кВт. В противном случае возникает перегрев, короткое замыкание и пожар. При включении автомата возобновиться питание, а резервный источник сломается.

Однако в некоторых случаях подключение генератора через розетку возможно. Если мини-станция соответствует по мощности, то ее можно подключить к распределительному щитку к контактам рубильника, но со стороны генератора. Лучшим вариантом будет, если к нему подключить сперва удлинитель, а только потом нужные приборы. Это исключит связь резервного источника с домашней сетью.

На даче и в загородном доме при постоянных отключениях основного источника резерв подключают через перекидной рубильник, системы автоматического запуска или реверсивный переключатель.

Оборудование для монтажа

Для подключения электрогенератора к электросети дома не потребуется много оборудования. Достаточно определить место расположения агрегата, обеспечить шумоизоляцию и вентиляцию в соответствии с нормами. Скорее всего, в помещении придется сделать цементно-песчаную стяжку для снижения вибрации.

Рассматривать монтаж мобильных генераторов до 2 кВт не имеет смысла. Они не могут полноценно обеспечить дом электричеством. К тому же они мобильны и не требует специальных условий месторасположения.

Опишем установку электрогенератора с мощностью от 2 кВт. Для организации резервной сети электропитания потребуется:

  • Медный кабель с сечением от 4 кв. мм для организации отдельного ввода. Длина должна соответствовать расстоянию между вводным устройством и месторасположением генераторного агрегата.
  • Модульный перекидной рубильник, который можно зафиксировать на DIN-рейке 35 мм. Среди недорогих моделей хорошо зарекомендовал TDM-63, а более надежными являются ABB, Hager.

Уделить внимание следует заземлению, так как подсоединение должно соответствовать ПУЭ. Другими словами перед подключением резерва необходимо организовать систему заземления TN-C-S или ТТ.

Дифзащита на выходе генератора не будет лишней. Даже при двухпроводном типе разводки заземление генерирующего устройства никто не отменял.

Подбор электрогенератора

Домашняя электростанция представляет собой двигатель внутреннего сгорания и вращающийся генератор, который вырабатывает электроэнергию. Наиболее распространены четырехтактные модели с максимальной частотой 3 тыс. оборотов. Объем топливного бака в бытовых моделях – 10-15 литров. Основной критерий выбора должна быть область использования. Генераторы могут выступать основным источником энергии, но чаще – это резерв при аварийной ситуации.

При выборе стоит обратить внимание на некоторые параметры:

  • моторесурс;
  • мощность;
  • экономичность;
  • удобство.

При подключении важно обеспечить слаженную работу 3 элементов:

  • домашней сети – потребителя;
  • централизованной цепи подачи;
  • кабеля от резерва.

Перед подключением определяются со следующими моментами:

  • безопасное и экономичное расположение электрогенератора;
  • частота сбоев подачи электроэнергии в общей сети, необходимость в автоматики;
  • рассчитанная мощность потребления с учетом запаса и потерь.

Требуется обеспечить подходящую схему подключения.

Автоматизация электрификации требует много финансовых вложений и регулярного квалифицированного обслуживания. Для индивидуального дома щадящим режимом будет ручное подключение. Есть смысл в использовании частичной автоматизации в форма полуавтоматов – их стоимость не высока. Однако при любом выборе систему необходимо периодически контролировать.

Непрерывна подача энергии стоит достаточно дорого, частный дом редко нуждается в подобном обеспечении. На важные потребители электроэнергии, такие как компьютер, можно подключить бесперебойный источник питания.

В первую очередь необходимо рассчитать мощность потребляемой энергии. Она является суммой мощностей нагрузок, которые запланировано подключить. Дополнительно прибавляют запас в размере 30% от суммарного значения. Это требуется для учета пусковых токов двигателей бытовой техники, которые в 2-3 раза превышают допустимых. По расчетной мощности можно выбирать агрегат.

Пример расчета. В доме установлена стиральная машина 2 кВт, холодильник – 0,5 кВт, электроплита – 3 кВт, общее освещение – 0,5 кВт, телевизор компьютер – 0,5 кВт. Суммарная мощность составляет 6,5 кВт, но при учете запаса расчетное значение повысится до 8,5 кВт.

Генератор негативно реагирует на отсутствие нагрузки. Постоянно потребление должно быть меньше максимум на 30% от наибольшего номинального значения. При минимальном потреблении необходимо использовать компактные модели с мощностью 2-3кВт на время отсутствия электроэнергии в основной сети.

Схема подключения к домашней сети бензинового генератора должна быть наиболее простой. Главное, чтобы она была правильной и позволяла обеспечить агрегат требуемой нагрузкой.

Виды генераторов

Бытовыми источниками энергии могут быть различные типы генераторов, но наиболее востребованными являются бензиновые. Они обладают следующими особенностями:

  • широкий диапазон цен;
  • мощность 0,8-12 кВт;
  • небольшие размеры;
  • существуют стационарные и мобильные модели;
  • существуют однофазные и трехфазные;
  • используется четырехтактный двигатель внутреннего сгорания.

При выборе схемы подключения необходимо учитывать способ охлаждения ДВС, что в свою очередь зависит от времени и частоты работы. Наиболее часто модели оснащены воздушными радиаторами. Промышленные модели способны работать длительное время, так как в них предусмотрено жидкостное охлаждение. Это увеличивает габаритные размеры, но повышает экономичность.

Дизель-генераторы используются реже в домашних сетях, так как их стоимость выше. Однако их использование обосновано большим ресурсом.

Типы электрогенераторов

Существует несколько типов электрогенераторов:

  • Асинхронные. Имеют простую и надежную конструкцию. Все узлы полностью защищены от влаги и пыли. Устройства лучше использовать для активных нагрузок. Асинхронные генераторы не рекомендуют использовать для питания электродвигателя.
  • Синхронные. Они не содержат перечисленных недостатков асинхронных генераторов. Также они способны более точно поддерживать напряжение. Отдавать предпочтение следует бесщеточную конструкцию с лучшими характеристиками тока и меньшими радиопомехами. У инвентарных моделей меньшая мощность и выше стоимость. Однофазные имеют хуже характеристики, особенно недорогие. Немного лучше трехфазные генераторы. Вторым недостатком считается высокая стоимость и более низкая надежность.

Однофазные и трехфазные

Если в доме нет трехфазных потребителей, то лучше установить более простую модель для рационального использования мощности. Подключить самостоятельно однофазный генератор намного проще. Стоимость трехфазных агрегатов выше, а сам генератор должен быть равномерно нагружен по трем нагрузкам равномерно.

Выход из строя происходит при превышении разницы на 25%. В качестве резервного источника однофазный генератор предпочтительнее при любых выходах.

Схема подключения

Существует несколько способов использования дополнительного источника питания:

  • Подключение по отдельной схеме резерва к выделенной группе.
  • Использование трехпозиционного переключателя или перекидного рубильника. Для запитки всей цепи делаются перемычки со стороны генератора на входе. Единственный минус – трехфазные потребители не работают.
  • Монтаж двух контактов для питания от резервного источника и городской сети. Метод применяется при АВР. Со стороны резерва обязательно делают перемычки.

Трехфазный генератор подключают к трехфазной сети при наличии электроприемника. Примером может быть электродвигатель станков.

Автозапуск генератора

Полноценным методом переключения нагрузки подразумевает использование АВР. В системе есть электростартер. Устройство автозапуска начинает контролировать внешнюю сеть после подачи питания на него. Перед подключением генератора автоматика ждет около 10 секунд после исчезновения напряжения. Далее внешняя сеть полностью изолируется и запускается дизель-генератор. Для полного набора оборотов требуется около 20 секунд, после чего организуется подключение к домашней сети. После восстановления работы внешней сети резерв отключается, а домашняя сеть начинает работать в привычно режиме. Только после этого двигатель генератора глушится.

Схема предполагает наличие у генератора системы остановки двигателя и стартера. При наличии большого опыта можно организовать ее самостоятельно, но это хлопотно. Вопрос можно решить двумя способами:

  • С электрогенератором приобрести комплектный блок управления. Его подключают по указанной с инструкции схеме. Он не только будет регулировать запуск и остановку, но и частоту оборотов, то есть итоговую мощность.
  • Устройства АВР, в которых есть компоненты, устанавливающиеся на генератор в качестве дополнительного оборудования для управления дроссельной заслонкой и стартером.

Комплекты имеют защиту по току и страхуют от перенапряжения и утечек. Монтаж заключается в подсоединении проводов потребителя и ввода на коммутирующие приборы.

Использование генератора с АВР дорогостоящее, но удобное решение.

Использование перекидного рубильника

Расположение щита с ВРУ в легкодоступном месте может оказаться камнем преткновения для домовладельцев. Есть смысл использования автоматического устройства переключения. Реализация метода не сложнее проходного выключателя. Потребуются два модульных контакта, количество контактных пар соответствует необходимому числу, и пара нормально замкнутых и разомкнутых контактов. В обычном режиме городская сеть будет на подхвате включенного контактора. Если в общей сети электричество пропадает, то контакты отбрасывает и пара контактов замыкается, что приводит в действие другие контакты, ответственных за резерв.

Рубильник помогает обособить схемы источников питания – крайний контакт рубильника подключают к вводу электросети и кабелю электростанции, а средний – к потребителю. Хорошо, если в рубильнике будет промежуточное нейтральное положение. Исходным положением будет подключение главной сети. Но при переключении электропитание начинает идти с генератора.

Старые модели рубильников отличаются открытыми токоведущими частями и искрением. В современных моделях предусмотрен защитный кожух, который прячет подвижные части.

Переключатель закрепляют в щитке управления так, чтобы исходным положением была работа основной сети. При падении напряжения переключатель становиться в нейтральное положение, после чего запускается генератор. Он должен прогреться и только после подключиться к домашней нагрузке.

Целесообразно установить временное реле, которое начнет подачу электропитания через пару минут после запуска генератора. Это требуется для прогрева оборудования. Резервный контактор должен питаться через коммуникатор главного ввода, точнее его нормально замкнутый контакт.

При возобновлении общего энергоснабжения первый контакт включается и размыкает цепь, запутывающую второй ввод.

Подобная схема с натягом называется автоматической, так как пуск все же осуществляется под человеческим контролем.

Подключение нагрузки

Чаще всего генератор не способен обеспечить полную потребность домашней сети. Он используется на основные потребители – часть бытовых приборов и освещение.

Автоматический ввод резерва

Следует рассмотреть переоборудование проводки, чтобы исключить множества переключателей. Как правило, организуют одну отдельную линию для дежурного освещения и вторую – к розеткам компьютера, холодильника и телевизора. В щиток монтируют клеммник для подключения выхода генератора.

Реверсивный переключатель

Используют реверсивный рубильник для переключения источников питания. В устройстве ручка имеет три положения для замыкания и размыкания цепи, среднее положение для размыкания всех контактов. На даче или в частном доме с небольшим потреблением можно использовать однофазную схему подключения к домашней сети резервного источника. В щитке должны быть индикаторные лампы для сигнализации включения генератора или сети.

Традиционно нижние контакты используют для нагрузки, а с противоположной стороны подключают вводы.

Трёхпозиционный переключатель не имеет теплового или электромагнитного разъединителя. По этой причине каждый ввод должен быть подстрахован автоматом, который срабатывает при превышении допустимой нагрузки.

Этапы подключения генератора по схеме с пакетным переключателем:

  • Автомат ввода отключить.
  • Рукоятку переключателя установить на сеть генераторной установки.
  • Автомат нагрузки отключить.
  • Соединить кабель ручного переключателя к розетки генератора.
  • Запустить генератор, позволить прогреться пару минут.
  • Подать питание на рубильник.
  •  Автоматы нагрузки включить.

После появления электроэнергии в основной сети агрегат отключают от нагрузки, используя обратную последовательность.

Если достойное перекидное устройство отсутствует, то его делают из двух двухполюсных однотипных автоматов. Они должны быть установлены на одном уровне. Один из них крепят перевернутым, но чтобы клавиши были на одном уровне и фиксируют стальным штифтом.

Система АВР

Организация автоматического запуска стоит значительно больше ручного. Однако внешний контроль она не отменяет – запуск ДВС подразумевает управление дроссельной заслонкой. Как и ранее отмечалось, двигатель после пуска необходимо прогреть. Некоторые хозяева используют частичную автоматизацию – основное питание подключено через контактор. При отключении входа он размыкается. На следующем этапе требуется запустить вручную генератор. В нем встроено реле для прогрева и автоматического перехода домашней сети на резервный источник. При появлении электричества в основной сети контактор отключается, а нагрузка идет на общую сеть. При полной автоматизации электроснабжения резерв имеет микропроцессорное регулирование работы генератора.

Подключение генератора

Генератор должен быть хорошо защищен от влаги. Для этого используют отдельное помещение или навес. При монтаже в помещении обязательно предусматривают отвод выхлопа газа. Электрогенератор устанавливают после счетчика, в противном случае придется платить за выработанную самостоятельно энергию. Резервный источник может быть подпиткой во время пиковых нагрузок. Необходимо правильно подобрать схему монтажа, чтобы исключить необоснованных трат.

Нестабильная подача электроэнергии приводит к проблеме – как подключить генератор к домашней сети. Выбирать следует простые и безопасные схемы. Удобным источником энергии станет генератор с ДВС. Оборудование легко перевозить  и использовать, его стоимость не высока. Для правильного подбора оптимальной схемы потребуется узнать особенности устройства, переключающего оборудования.

 

Варианты схем АВР применяемых при работе с автономным источником питания.

Питание нагрузки осуществляется от сетевого или от автономного источника питания.
На схеме Ввод1 — сетевой, автономный источник — ввод с ДГУ.

Нагрузка общая подключена через автоматический выключатель QF3. Между контакторами КМ1 и КМ2 устанавливается механическая блокировка.
РАБОТА СХЕМЫ: при наличии нормального сетевого напряжения на ВВоде1 нагрузка запитывается от него по цепи — автомат QF1, контактор КМ1, автомат QF3. При отсутствии нормального напряжения на вводе подается команда на запуск ДГУ, он запускается, выходит на рабочий режим и через QF2,КМ2, QF3 подается питание на нагрузку. Данная схема может работать в однофазной или трехфазной сети. Для этого необходимо предусмотреть соответствующие изменения.

Питание нагрузки осуществляется от одного из двух вводов Ввода1, Ввода2 или от автономного источника ДГУ.

Схемы АВР для ДЭС

На схеме три ввода, первый и второй вводы это сетевые, ввод с ДГУ.
Логика работы следующая: при пропадании напряжения на сетевом Вводе 1, переключается питание от Ввода2, или наоборот, если работает АВР от Ввода 2 при пропадании напряжения на этом вводе переключается на Ввод 1. В случае отсутствия напряжения (нормального напряжения) на Вводах 1 и 2, через время Т1 (выдержка времени после пропадания напряжения на основных вводах) подается команда на запуск ДЭС. Питание происходит от ДЭС через КМ4. Питание осуществляется с вводов 1,2 через КМ1 или КМ2 и далее через КМ3. КМ3 введен в схему для обеспечения предотвращения встречного напряжения между появлением напряжения на основном вводе и напряжением с ДГУ, между КМ3 и КМ4 установлена механическая блокировка. Рубильник QS отключает часть нагрузки.


Питание нагрузки осуществляется от внешней сети и двух автономных источников.

Да схеме три ввода, первый ввод это сетевой, два других ввода от ДГУ одно установленное в контейнере, второе ДГУ в существующем здании. Логика работы следующая: при пропадании напряжения на сетевом вводе, через время Т1 подается команда на запуск ДЭС в контейнере и питании от ДЭС осуществляется пока не закончится топливо (или в случае неполадок, в других случаях). АВР №2 выдает команду на запуск ДГА, находящегося в помещении, после истечении времени Т2, которое устанавливается больше чем время Т1.

 

Схема №8. Питание нагрузок осуществляется от двух источников питания внешней сети Ввод №1 и Ввод №2 и одного автономного источника Ввод №3 ДГУ. При наличии напряжения на обеих сетевых вводах № 1,2 питание на нагрузки поступает через рубильники с моторизированным приводом. Рубильник QS отключает часть нагрузки.
При наличии нормального напряжения на обеих вводах АВР 1 и АВР2 подают команду на включение 4QS — 7QS в левом положении.
Питание с Ввода №1 на Нагрузку 1 поступает через рубильник 1QS, автоматический выключатель 1QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 4QS, 6QS.
Питание с Ввода №2 на Нагрузку 2 поступает через рубильник 2QS, автоматический выключатель 2QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 5QS, 7QS.
В этом случае питание нагрузки Выхода №2 происходит от рабочего Ввода №1. Первый АВР подает команду 5QS и он переводится в правое положение. Цепь прохождения питания Ввод №1 1QS, 1QF,5QS и далее как и при обычной работе 7QS, 5QF нагрузка Выхода №2.
Отсутствие напряжения на Вводе №1 работа подобная как и в предыдущем случае, за исключением 4QS переводится в другое положение.
Отсутствие напряжения на Вводах №1, №2.
При отсутствии напряжения на обеих рабочих вводах, через время задержки Т1 подается команда на запуск ДГУ. После появления нормального напряжения на Вводе №3 через время задержки Т2 срабатывает АВР №2 переключает питание нагрузок Выходов №1 и№2 от ДГУ, подается команда на переключение 6QS, 7QS в правое положение. Работа от ДГУ продолжается до тех пор пока на вводах 1,2 или вводе 1(2) не появится нормальное напряжение — переключение происходит в обратном порядке: подается команда "СТОП" ДГУ, переключаются 6QS, 7QS в левое положение, а 4QS и 5QS в зависимости на каком вводе (вводах) нормальное напряжение.
Реверсивные рубильники с моторным приводом типа ОТМ производства АВВ или Socomec.
Преимущества схемы: наличие механической блокировки между всеми вводами.
На рисунке слева приведено решение похожее на схему №8, но вместо рубильников с моторным приводом применены контакторы. Схема АВР на 80А собрана на восьми контакторах, на три ввода, между парами контакторов установлена механическая блокировка.
Схема позволяет обеспечить защиту от встречного включения вводов во всех вариантах питания, управление контроллером Zelio, коммутирующие элементы — контакторы Шнайдер Электрик:
1. При работе от двух сетевых сетевых вводов.
2. Работа обеих нагрузок от одного сетевого ввода, а при восстановлении второго сетевого ввода переключение питания соответственно от своего ввода (в исходное каждая нагрузка подключается к своему вводу).
3. При работе нагрузки №1 и №2 от ДГУ, а с появлением сетевого ввода (вводов) происходит переключение питания от сети.
Данная схема предлагается к применению производителями дизельных генераторных установок, подобные схемы можно увидеть в технической документации на станцию.

Суть предназначения этой схемы в следующем:
Если установка ДГУ (ДГА) поставляется на объект который запитан с одного ввода, а в случае неполадок на вводе автоматически включается ДГУ (по желанию заказчика) и по команде с контроллера происходит включение питание от ДГУ, при восстановлении нормального напряжения на основном вводе питания переключается обратно на основной ввод, ДГУ останавливается.
РАБОТА схемы: для проверки напряжение сетевого ввода поступает на контроллер ДГУ, в случае неполадок с сетевым трехфазным напряжением, с контроллера подается команда на отключение контактора КС и на запуск ДГУ, после выхода на нормальный режим дизельной станции, по команде с контроллера ДГУ включается контактор КГ, питания нагрузки осуществляется от автономного агрегата. Для защиты от перегрузок служат автоматические выключатели. К клеммам подключаются цепи автоматики ДГУ. Имеются схемы и с применением 4-х полюсных контакторов.
Существенным недостатком схемы можно считать то, что при неисправном ДГУ или находящемся на техническом обслуживании (и в других случаях) — АВР не работает, на нагрузку не поступает напряжение от сетевого ввода, что вызовет недовольство потребителя.
Решение: для исключения указанного недостатка схему необходимо доработать, дополнительно ввести ручной режим (установить переключатель и желательно еще РКН по Вводу №1).

Схема ВРУ с АВР и ДГУ

Особенности схемы: маломощный ДГУ не в состоянии обеспечить полную нагрузку, а только часть.
В схеме имеется два основных равнозначных ввода, при пропадании обеих вводов запускается дизельная станция, её нагрузочная способность составляет 25 кВт.
Работа схемы управления:
Питание осуществляется от одного из основных вводов Ввод №1 или Ввод №2, через контакторы КМ1 (КМ2) и КМ3. В случае пропадания напряжение на Вводе №1 АВР переключает питание от Ввода №2, (включает контактор КМ2) и наоборот. При аварийном состоянии обеих вводов (контакторы КМ1, КМ2 и КМ3 обесточены и находятся в выключенном состоянии) через время задержки Т1 подается команда на запуск ДГУ. После выхода на рабочий режим дизельной установки, через время задержки Т2 включается контактор КМ4, контактор КМ3 остается в выключенном состоянии, питание подается на приоритетные нагрузки.
В схеме напряжение с вводов с начало подается через рубильники QS1, QS2 и далее через контакторы на общую нагрузку. С общего выхода напряжение поступает через автоматический выключатель к потребителям через свои автоматические выключатели.
Для учета электрической энергии предусмотрены электрические счетчики устанавливаемые на оба основных ввода. Контроль входного напряжения и потребляемого тока осуществляется вольтметрами и амперметрами, вольтметры с переключателем для измерения по фазно линейного и фазного напряжений.
На фото показан исполненный по вышеуказанной схеме электрический щит.
1. На левой фотографии общий вид ВРУ с АВР: на панели расположены контрольные приборы с переключателями, лапы сигнализации. На левой половине шкафа в верхнем ряду находятся амперметры для измерения контроля тока нагрузки от сетевых вводов 1 и 2, вольтметры для измерения напряжения 1 и 2 вводов.
В верхнем ряду вольтметр (под ним переключатель) для контроля напряжения от ДГУ, для измерения тока потребляемого от ДГУ амперметры в каждой фазе.
Ниже расположены лампы индикации состояния вводов АВР, переключатель режима работы и выбора ввода в ручном режиме, переключатель отключения цепи запуска ДГУ.
2. На втором и третьем снимке показан монтаж внутри шкафа, пластроны защиты от поражения электрическим током, слева вверху оставлено место для установки счетчика электроэнергии.
Схема АВР с одним основным вводом Ввод от ЩАВР1 и с питанием от автономного источника Ввод ДГУ

В данной схеме два основных ввода и ввод от автономного источника питания.
Между вводом №1 и Вводом №2 устанавливается механическая блокировка.
В этом решении отсутствует механическая блокировка между основными вводами и ДГУ.

Схема рассчитана на четыре ввода: три основных ввода и ввод от ДЭС, механической блокировки между вводами нет. Для уменьшения размеров и стоимости устанавливаются автоматические выключатели с моторным приводом.
1. На структурной схеме показан пример АВР с общей нагрузкой, к выходу которого подключаются три отходящих фидера.
2. В данной схеме ДГУ должен обеспечивать полную мощностью потребляемой нагрузки, в примере потребляемый ток 160А, поэтому ток автоматических выключателей на каждом вводе одинаков.
3. При необходимости устанавливаются электрические счетчики нужного типа.
4. Управление работой моторных приводов осуществляется программируемым контроллером, при этом необходимо учитывать, что между включениями и отключениями делается некоторая задержка по времени, что позволит увеличить надежность работы данной схемы.
5. Команда на запуск и остановку ДГУ подается с контроллера, при пропадании напряжения на основных вводах, при восстановлении напряжения происходит переключение на основной ввод.
6. Для уменьшения количества электрических связей данные мониторинга могут передавать по протоколу MODBUS через интерфейс RS-485 и выводиться на ПК, но при этом можно реализовать и по другому передачу информации.



Назначение электрического оборудования распределительных устройств

Оборудование первичных и вторичных цепей

Рис.1. Однолинейная схема электростанции средней мощности с РУ 10 и 110 кВ:
G — генератор; Т — трансформатор; Q — выключатель;
QB — выключатель секционный; QS — разъединитель;
LR — токоограничивающий реактор; F — разрядник;
W — линия электропередачи

Назначение электрического оборудования первичных цепей

Назначение аппаратов и других элементов РУ удобно рассмотреть применительно к схеме конкретной установки (рис.1). Как видно из схемы, в каждом присоединении предусмотрены выключатели и соответствующие разъединители.

Выключатели

Выключатели Q являются важнейшими коммутационными аппаратами. Они предназначены для включения, отключения и повторного включения электрических присоединений. Эти операции выключатели должны совершать в нормальном режиме, а также при коротких замыканиях (КЗ), когда ток превосходит нормальное значение в десятки и сотни раз. Выключатели снабжены приводами для неавтоматического и автоматического управления. Под неавтоматической операцией включения или отключения понимают операцию, совершаемую человеком, который замыкает цепь управления привода выключателя особым ключом обычно на расстоянии, т.е. дистанционно. Автоматическое включение и отключение происходит без вмешательства человека с помощью автоматических устройств, замыкающих те же цепи управления.

Выключатели предусмотрены также в сборных шинах.

Эти выключатели называют секционными QB.

Щиты управления ДГУ

В РУ станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически размыкаться только в случае повреждения в зоне сборных шин.

Вместе с ними должны размыкаться и другие выключатели поврежденной секции. Таким образом поврежденная часть РУ будет отключена, а остальная часть останется в работе.

При наличии достаточного резерва в источниках энергии и линиях электроснабжение не будет нарушено.

Разъединители

Разъединители QS имеют основное назначение — изолировать (отделять) на время ремонта в целях безопасности электрические машины, трансформаторы, линии, аппараты и другие элементы системы от смежных частей, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе, например токе намагничивания небольшого трансформатора или емкостном токе непротяженной линии.

В отличие от выключателей разъединители в отключенном положении образуют видимый разрыв цепи. Как правило, их снабжают приводами для ручного управления. Операции с разъединителями и выключателями должны производиться в строго определенном порядке. При отключении цепи необходимо сначала отключить выключатель и после этого отключить разъединители, предварительно убедившись в том, что выключатель отключен. При включении цепи операции с выключателем и разъединителями должны быть выполнены в обратном порядке. Таким образом, замыкание и размыкание цепи с током совершает выключатель. Разъединители образуют дополнительные изолирующие промежутки в цепи, предварительно отключенной выключателем.

Разъединители размещают так, чтобы любой аппарат или любая часть РУ могли быть изолированы для безопасного доступа и ремонта. Так, например, в каждой линейной цепи должны быть предусмотрены два разъединителя — шинный или линейный, с помощью которых выключатели могут быть изолированы от сборных шин и от сети. В цепи генератора достаточно иметь только шинный разъединитель, обеспечивающий безопасный ремонт генератора и выключателя; при этом генератор должен быть отключен и остановлен. Для ремонта двухобмоточных трансформаторов и соответствующих выключателей достаточно иметь шинные разъединители со стороны высшего и низшего напряжений.

Заземляющие устройства

Для безопасной работы в РУ и в сети недостаточно изолировать рабочее место от смежных частей, находящихся под напряжением. Необходимо также заземлить участок системы, подлежащий ремонту. Для этого у разъединителей предусматривают заземляющие ножи, с помощью которых участок, изолированный для ремонта, может быть заземлен с обеих сторон, т.е. соединен с заземляющим устройством установки, потенциал которого близок к нулю. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Их включают при подготовке рабочего места для ремонта после отключения выключателей и разъединителей и проверки отсутствия напряжения.

Использование разъединителей не ограничивается изоляцией отключенных частей системы в целях безопасности при ремонтах. В РУ с двумя системами сборных шин разъединители используют также для переключений присоединений с одной системы сборных шин на другую без разрыва тока в цепях.

Токоограничивающие реакторы

Токоограничивающие реакторы LR представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы линейные и секционные.

Измерительные трансформаторы тока

Измерительные трансформаторы тока ТА предназначены для преобразования тока до значений, удобных для измерений. В присоединениях генераторов, силовых трансформаторов, линий со сложными видами защиты необходимы два-три комплекта трансформаторов тока.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения TV предназначены для преобразования напряжения до значений, удобных для измерений. Трансформаторы напряжения присоединяют к сборным шинам станций; их предусматривают также в присоединениях генераторов, трансформаторов и линий.

На принципиальных схемах измерительные трансформаторы обычно не показывают.

Вентильные разрядники

Вентильные разрядники F, а также ограничители перенапряжений предназначены для защиты изоляции электрического оборудования от атмосферных перенапряжений. Они должны быть установлены у трансформаторов, а также у вводов воздушных линий в РУ.

Токопроводы

Токопроводы представляют собой относительно короткие электрические линии (как правило, от нескольких метров до нескольких сотен метров) с жесткими или гибкими проводниками, укрепленными на опорных или подвесных изоляторах, предназначенные для соединения электрических машин, трансформаторов и электрических аппаратов в пределах станции, подстанции, распределительного устройства.

Требования, предъявляемые к электрическому оборудованию и токопроводам

Требования, предъявляемые к электрическому оборудованию и токопроводам, заключаются в следующем.

  • Изоляция оборудования должна обладать достаточной электрической прочностью, чтобы противостоять наибольшему рабочему напряжению, а также коммутационным и атмосферным перенапряжениям.
  • Оборудование и проводники должны:
    • проводить в течение неограниченного времени наибольшие рабочие токи соответствующих присоединений; при этом температура в наиболее нагретых точках не должна превышать нормированные значения для продолжительного режима;
    • выдерживать тепловое и механическое действия токов КЗ, т.е. обладать достаточной термической и электродинамической стойкостью;
    • быть экономичными и надежными в эксплуатации, т.е. вероятность повреждений должна быть мала, а требования к уходу и ремонту минимальными;
    • быть безопасными для лиц, обслуживающих установку.

Кроме перечисленных общих требований, к электрическому оборудованию предъявляют ряд частных требований в соответствии с назначением и условиями работы оборудования.

Номинальные параметры электрического оборудования — это параметры, определяющие свойства электрического оборудования, например номинальное напряжение, номинальный ток и многие другие.

Номинальные параметры назначают заводы-изготовители. Они указываются в каталогах, справочниках, на щитках оборудования. При проектировании установки и выборе оборудования номинальные параметры сопоставляют с соответствующими расчетными значениями напряжений и токов, чтобы убедиться в пригодности оборудования для работы в нормальных и анормальных условиях. Ограничимся здесь лишь определением понятия номинального напряжения электрической сети и электрического оборудования.

Номинальное напряжение — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы:

Номинальное междуфазное напряжение, действующее значение, кВ…

3..6..10..20..35..110

Наибольшее рабочее напряжение, действующее значение, кВ… 3,5..6,9..11,5..23..40,5

Номинальное междуфазное напряжение. действующее значение, кВ… 150..220..330..500..750..1150

Наибольшее рабочее напряжение, действующее значение, кВ… 172..252..363..525..787..1210

Для сетей с номинальным напряжением 220 кВ включительно наибольшее рабочее напряжение принято равным 1,15 номинального; для сетей с номинальным напряжением 330 кВ — 1,1 номинального и для сетей 500 кВ и выше — 1,05 номинального. Электрическое оборудование должно быть рассчитано на продолжительную работу при указанных напряжениях.

Изоляция электрического оборудования должна также противостоять перенапряжениям, т.е. кратковременному действию напряжений, превышающих наибольшее рабочее напряжение. Различают перенапряжения коммутационные и атмосферные.

Аппараты вторичных цепей. Релейная защита и элементы системной автоматики

Автоматические устройства, в частности релейная защита, необходимы там, где требуется быстрая реакция на изменение режима работы и немедленная команда на отключение или включение соответствующих цепей. Так, например, при КЗ, когда ток в ряде цепей резко увеличивается, необходимо немедленно отключить поврежденный участок системы, чтобы но возможности уменьшить размеры разрушения и не помешать работе смежных неповрежденных цепей. Такая команда может быть подана только автоматическим устройством, реагирующим на изменение тока, направление мощности и другие факторы и замыкающим цепи управления соответствующих выключателей.

Автоматическое отключение элементов системы, должно быть избирательным (селективным).

Это означает, что в случае повреждения в любой цени отключению подлежит только поврежденная цепь ближайшими к месту повреждения выключателями. Работа остальной части системы не должна быть нарушена. Так, например, при замыкании в точке К1 (рис.2) ток проходит по цепям генераторов, повышающих трансформаторов, поврежденной и неповрежденной линий. Однако отключению подлежит только поврежденная линия с обеих сторон. Связь станции с системой сохранится по другой линии.

В случае повреждения генератора или трансформатора отключению подлежит только поврежденный элемент. На рис.2 участки системы, подлежащие отключению в случае их повреждения, разграничены пунктирными линиями. Каждый участок отключается одним или двумя выключателями. В случае повреждения выключателя отключению подлежат два смежных участка.

Рис.2. Электрическая схема станции и участка сети
Пунктирные линии разграничивают участки станции и сети,
подлежащие отключению в случае их повреждения

Избирательность релейной защиты обеспечивают различными способами, например соответствующим выбором времени или тока срабатывания защит смежных участков сети, применением реле, реагирующих на направление мощности, и др.

Время отключения цепи при КЗ слагается из времени срабатывания релейной защиты и времени отключения выключателя, исчисляемого от момента подачи команды на отключение до момента погасания дуги в разрывах выключателя.

Время отключения основных линий системы стремятся по возможности уменьшить, чтобы не нарушить устойчивости параллельной работы электростанций. Время отключения новейших выключателей составляет два периода и время релейной защиты еще 0,5 периода. Полное время отключения составляет таким образом 2,5 периода. Для распределительных сетей 2,5-периодное отключение не требуется. Здесь применяют более простые защиты и менее быстродействующие выключатели, стоимость которых значительно ниже. Полное время отключения составляет несколько десятых долей секунды и более.

Автоматическое повторное включение

Автоматические устройства для повторного включения (АПВ) воздушных линий после отключения их защитой имеют назначение быстро восстановить работу линии после отключения. Эффективность повторного включения воздушных линий основана на том, что большая часть замыканий связана с грозовыми разрядами и приводит к перекрытию изоляторов по поверхности. После автоматического отключения линии электрическая прочность воздушного промежутка быстро восстанавливается и при повторном включении линия остается в работе.

Первоначально команда на повторное включение подавалась вручную дежурным на щите управления. Позднее операцию включения стали автоматизировать. В настоящее время автоматическое повторное включение, однократное и двукратное, получило широкое применение. Оно способствует повышению надежности электроснабжения, в особенности при питании потребителей по одиночным линиям.

Полное время автоматического повторного включения исчисляется от подачи команды релейной защиты на отключение выключателя до повторного замыкания его контактов. Оно должно быть возможно малым, чтобы не нарушать работу потребителей, но в то же время достаточным для деионизации дугового промежутка в месте перекрытия. Время повторного включения зависит от напряжения сети и быстродействия выключателя. В устройствах двукратного повторного включения для первого включения выбирают минимальное время из условия деионизации дугового промежутка. Если первое включение оказывается неуспешным и линия отключается вновь, происходит второе включение с интервалом в несколько секунд.

Автоматический ввод резерва

Автоматические устройства для включении резервной цепи (АВР) должны автоматически включать резервный трансформатор или резервный агрегат взамен отключенного защитой, а также автоматически подключать секцию сборных шин (с соответствующей нагрузкой), потерявшую питание, к соседней секции, обеспеченной питанием, с целью быстрого восстановления электроснабжения. Перерыв в подаче энергии должен быть относительно невелик, не более 0,5 с, чтобы электродвигатели, потерявшие питание, не успели остановиться, а после восстановления питания могли быстро войти в нормальный режим работы.





Оборудование РУ



 

В данной статье, речь пойдет о схеме АВР на напряжение 380 В от трех независимых источников питания, в качестве третьего источника питания предусматривается дизель генераторная установка (ДГУ).

Питание потребителей от трех независимых источников питания предусматривается для потребителей 1-й категории особой группы, когда необходима бесперебойная работа для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров в соответствии с ПУЭ 7-издание пункт 1.2.18.

Особенностью данной схемы является то, что при отключенных обоих вводах, в случае аварии или вручную были отключены вводы, например для проверки (ремонта) электрооборудования, производится автоматический запуск ДГУ и подключение к нему нагрузки. При восстановлении напряжения на любом из вводов, происходит автоматическое переключение в исходное состояние. На рис.1 представлена схема АВР с ДГУ выполненная на контакторах в однолинейном изображении.

Рис.1 – Схема АВР с ДГУ на контакторах в однолинейном изображении

Принцип работы АВР

В нормальном режиме, питание потребителей напряжением 380В осуществляется от Ввода 1 или Ввода 2 через общий силовой контактор КМ3, который включается через определенную выдержку времени с помощью реле времени КТ1, делается это для того, чтобы питание осуществлялось при наступлении устойчивого режима работы.

Наличие напряжения на каждом из вводом контролируется реле контроля напряжения KV1 и KV2. Переключатель SA1 служит для выбора приоритетного ввода. При наличии напряжения на обоих вводах, первым подключится тот ввод у которого выбран приоритет (положение «1» – первый ввод, положение «0» – оба ввода отключены, положение «2» – второй ввод).

Рис.2 – Схема электрическая принципиальная АВР с ДГУ на контакторах

Принцип работы АВР с основными вводами (Ввод 1 и Ввод 2)

Например при исчезновении напряжения на Вводе 1, срабатывает реле контроля напряжения KV1 и размыкает своими контактами, цепь питания контактора КМ1. При наличии напряжения на Вводе 2, контакты реле KV2 замкнуты и если контактор КМ1 находится в отключенном состоянии, то сработает контактор КМ2, при этом контактор КМ3 находится во включенном состоянии и напряжение потребителям подается через замкнутые силовые контакты контакторов КМ1 и КМ3.

Аналогично выполняется АВР для Ввода 2.

Принцип работы АВР с ДГУ

При пропадании напряжения на основных вводах: Ввод 1 и Ввод 2, происходит замыкание цепи управления генератором, размыкание цепи питания силового контактора КМ3.

Дизельный генератор с АВР

После того, как генератор запустится и реле контроля напряжения KV3 замкнет свой выходной контакт, начинается отсчет времени с помощью реле времени с задержкой на включение KT2, необходимый для стабилизации выходных параметров генератора. По окончании отсчета, цепь питания контактора КМ4 замыкается и подключается питание генератора.

При восстановлении напряжения на каком либо из основных вводов. Например восстановилось напряжение на Вводе 1, в этом случае срабатывает реле контроля напряжения KV1 и своими контактами замыкает цепь питания контактора КМ1. При этом выходные контакты контактора КМ1 замыкаются и подается питание на реле времени с задержкой на включение KT1.

После окончания отсчета времени, реле времени КТ1 замыкает цепь питания промежуточное реле KL3, которое в свою очередь замыкает цепь питания катушки контактора КМ3 и размыкает цепь питания контактора КМ4, после того как контактор КМ4 отключится, сработает КМ3 и через замкнутые силовые контакты контакторов КМ1 и КМ3 подается напряжение потребителям от основного Ввода 1.

Также рекомендую вам ознакомится со схемой АВР на три ввода с секционным контактором.

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.




FILED UNDER : IT

Submit a Comment

Must be required * marked fields.

:*
:*