admin / 01.03.2018

Сервопривод своими руками

Недавно я сделал руку-робота, а сейчас я решил добавить к нему захватывающее устройство, работающее на мини сервоприводе. Я решил сделать два варианта, чтобы посмотреть, как он будет лучше работать с прямой или круглой шестеренкой. Мне понравился больше вариант с круглой шестерней, так как его изготовление заняло всего 2 часа, и зазор между шестернями был совсем небольшим.

Сначала я вырезал детали на фрезерном станке:

Я собрал детали с помощью шурупов 2×10 мм.

А вот как мини-сервопривод присоединяется к захватывающему устройству:

Как работает захватывающее устройство с сервоприводом: 

И вот теперь, когда все собрано и механическая часть тоже практически готова, мне осталось только доделать электронную часть работы! Я выбрал Arduino для контроля моего робота, и сделал схему (она справа) для соединения Arduino с сервоприводом.

Схема на самом деле очень проста, она просто дает сигналы на Arduino и обратно. Существует также разъем для инфракрасного приемника и некоторые разъемы для источника питания и 4-х подключений к остальным (неиспользованным) контактам Arduino. Таким образом, можно подключить еще один выключатель или датчик.

А вот как рука-манипулятор двигается: 

НАПИСАТЬ КОММЕНТАРИЙ

Приобретение предприятием фрезерного станка с ЧПУ для изготовления фасадов из МДФ поднимает вопрос о необходимости переплачивать за те или иные механизмы и силовые агрегаты, установленные на дорогостоящем и высокотехнологичном оборудовании. Для позиционирования силовых агрегатов станков с ЧПУ используют, как правило, шаговые двигатели и серводвигатели (сервоприводы).

vri-cnc.ru

Шаговые двигатели – дешевле. Однако сервоприводы обладают широким рядом достоинств, в том числе высокой производительностью и точностью позиционирования. Так что же выбрать?

Что такое шаговый электродвигатель

Шаговый электродвигатель – это безщеточный синхронный электродвигатель постоянного тока, имеющий несколько обмоток статора. При подаче тока в одну из обмоток ротор поворачивается, а затем фиксируется в определенном положении. Последовательное возбуждение обмоток через контроллер управления шаговым двигателем позволяет вращать ротор на заданный угол.

Шаговые электродвигатели широко применяются в промышленности, так как имеют высокую надежность и длительный срок службы. Главное преимущество шаговых двигателей – точность позиционирования. При подаче тока на обмотки ротор провернется строго на определенный угол.

Положительные стороны шагового двигателя

·Устойчивость в работе;

·Высокий крутящий момент на малых и нулевых скоростях;

·Быстрый старт, остановка и реверс;

·Работа под высокой нагрузкой без риска выхода из строя;

·Единственный механизм износа, влияющий на длительность эксплуатации – подшипники;

·Невысокая стоимость.

Отрицательные стороны шагового двигателя

·Высокий уровень шума;

·Возможность появления резонанса;

·Постоянный расход электроэнергии вне зависимости от нагрузки;

·Падение крутящего момента на высоких скоростях;

·Отсутствие обратной связи при позиционировании;

·Низкая пригодность к ремонту.

Что такое серводвигатель (сервопривод)

Серводвигатель (сервопривод) – это электрический мотор с управлением через обратную отрицательную связь, которая позволяет точно управлять параметрами движения, чтобы достичь необходимой скорости или получить нужный угол поворота. В состав серводвигателя входят непосредственно сам электродвигатель, датчик обратной связи, блок питания и управления.

Конструктивные особенности электродвигателей для сервопривода мало чем отличаются от обычных электродвигателей имеющих статор и ротор, работающих на постоянном и переменном токе, с щетками и без щеток. Особую роль здесь играет датчик обратной связи, который может быть установлен как непосредственно в самом двигателе и передавать данные о положении ротора, так и определять его позиционирование по внешним признакам. С другой стороны, работа серводвигателя немыслима без блока питания и управления (он же инвертор или сервоусилитель), который преобразует напряжение и частоту тока, подаваемого на электродвигатель, тем самым управляя его действием.

Положительные стороны серводвигателя (сервопривода)

·Высокая мощность при малых размерах;

·Высокий крутящий момент;

·Быстрый разгон и торможение;

·Постоянное и бесперебойное отслеживание положения;

·Низкий уровень шума, отсутствие вибраций и резонанса;

·Широкий диапазон скорости вращения;

·Высокая скорость разгона;

·Точное позиционирование;

·Стабильная работа в широком диапазоне скоростей;

·Малая масса и компактная конструкция;

·Низкий расход электроэнергии при малых нагрузках.

Отрицательные стороны серводвигателя (сервопривода)

·Требовательность к периодическому обслуживанию (например, с заменой щеток);

·Дорогостоящий ремонт;

·Сложность устройства (наличие датчика, блока питания и управления) и логики его работы.

·Высокая стоимость.

Сервопривод или шаговый двигатель?

Сравнивая характеристики сервопривода и шагового двигателя, следует обратить внимание, прежде всего, на их производительность и стоимость.

Для производства фасадов МДФ на небольшом предприятии, работающем с малыми объемами, думаю, нет необходимости переплачивать за установку на фрезерный станок с ЧПУ дорогостоящих серводвигателей. С другой стороны, если предприятие стремится выйти на максимально возможные объемы производства, то дешевить на низкопроизводительных шаговых двигателях для ЧПУ не имеет смысла.

Другие статьи…

Серводвигатели используются не только в авиамоделизме и робототехнике, их можно так же использовать в устройствах бытового назначения. Небольшие размеры, высокая производительность, а так же проста управления серводвигателем делают их наиболее подходящими для осуществления дистанционного управления различными устройствами.

Совместное применение серводвигателей с радиомодулями примема-передачи не создает никаких трудностей, достаточно на стороне приемника просто подключить к серводвигателю соответствующий разъем, содержащий питающее напряжение и управляющий сигнал, и дело сделано.

Но если мы хотим управлять серводвигателем «вручную», например, с помощью потенциометра, нам необходим генератор импульсного управления.

Сервоприводы своими руками

Ниже представлена достаточно простая схема генератора на основе интегральной микросхемы 74HC00.

Данная схема позволяет осуществлять ручное управление серводвигателями путем подачи управляющих импульсов шириной 0,6 до 2 мс. Схему можно применить, например, для поворота небольших антенн, наружных прожекторов, камер видеонаблюдения и т.д.

Управления серводвигателем. Описание контроллера

Основой схемы является микросхема 74HC00 (IC1) представляющая собой 4 логических элемента И-НЕ. На элементах IC1A и IC1B создан генератор, на выходе которого образуются импульсы с частотой 50 Гц. Эти импульсы активируют RS-триггер, состоящий из логических элементов IC1C и IC1D.

С каждым импульсом идущим с генератора выход IC1D устанавливается в «0» и конденсатор С2 разряжается через резистор R2 и потенциометр P1. Если напряжение на конденсаторе С2 снижается до определенного уровня, то RC-цепь переводит элемент в противоположное состояние. Таким образом, мы на выходе получаем прямоугольные импульсы с периодом 20 мс. Ширина импульсов устанавливается потенциометром P1.

Например, сервопривод Futaba S3003 изменяет угол вращения вала на 90 градусов за счет управляющих импульсов продолжительностью от 1 до 2 мс. Если мы изменим ширину импульса от 0,6 до 2 мс, то угол поворота составит до 120 °. Компоненты в схеме подобраны таким образом, что выходной импульс находится в диапазоне от 0,6 до 2 мс, и поэтому угол установки составляет 120 °. Серводвигатель S3003 от Futaby имеет достаточно большой крутящий момент, и ток потребления может составлять от десятков до сотен мА в зависимости от механической нагрузки.

Конструкция

Схема управления серводвигателем собрана на двусторонней печатной плате размером 29 х 36 мм. Монтаж очень простой, так что со сборкой устройства вполне может справиться даже начинающий радиолюбитель.

Принцип работы

Вентильные электродвигатели

Вентильные двигатели – это синхронные бесколлекторные (бесщёточные) машины. На роторе находятся постоянные магниты из редкоземельных металлов, на статоре — якорная обмотка. Коммутация обмоток статора осуществляется полупроводниковыми силовыми ключами (транзисторами) так, чтобы вектор магнитного поля статора был всегда перпендикулярен вектору магнитного поля ротора — для этого используется датчик положения ротора (датчик Холла или энкодер). Фазный ток регулируется с помощью ШИМ-модуляции и может иметь трапецеидальную или синусоидальную форму.

Линейные серводвигатели

Плоский ротор линейного двигателя сделан из редкоземельных постоянных магнитов. По принципу действия он похож на вентильный двигатель.

Шаговые электродвигатели

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления – их коммутация выполняется внешним приводом.

Рассмотрим принцип работы реактивного шагового двигателя, у которого на полюсах статора расположены зубцы, а ротор выполнен из магнитомягкой стали и тоже имеет зубцы. Зубцы на статоре расположены так, что на одном шаге магнитное сопротивление меньше по продольной оси двигателя, а на другом – по поперечной. Если дискретно возбуждать в определённой последовательности обмотки статора постоянным током, то ротор при каждой коммутации будет поворачиваться на один шаг, равный шагу зубцов на роторе.

Сервопривод

Некоторые модели преобразователей частоты могут работать как со стандартными асинхронными двигателями, так и с серводвигателями. То есть основное отличие сервоприводов не в силовой части, а в алгоритме управления и скорости вычислений. Поскольку в программе используется информация о положении ротора, то у сервопривода есть интерфейс для подключения энкодера, установленного на валу двигателя.

Сервоконтроллер

В сервосистемах используется принцип подчинённого управления: контур тока подчинён контуру скорости, который в свою очередь подчинён контуру положения (см. теорию автоматического управления). Сначала настраивается самый внутренний контур – контур тока, потом – контур скорости и самым последним настраивается контур положения.

Контур тока всегда реализован в сервоприводе.

Контур скорости (как и датчик скорости) также всегда присутствует в сервосистеме, он может быть реализован как на базе встроенного в привод сервоконтроллера, так и внешнего.

Контур положения используется для точного позиционирования (например, осей подач в станках с ЧПУ).

Если в кинематических связях между исполнительным органом (координатным столом) и валом двигателя нет люфтов, то координата косвенно пересчитывается по значению кругового датчика. Если люфты есть, то на исполнительный орган устанавливается дополнительный датчик положения (который подключается к сервоконтроллеру) для прямого измерения координаты.

Сервопривод своими руками

Те есть, в зависимости от конфигурации контуров скорости и положения подбирается соответствующий сервоконтроллер и сервопривод (не в любом сервоконтроллере можно реализовать контур положения!).

Как выбрать сервопривод

Основные функции сервосистем

  • Позиционирование (Positioning)
  • Интерполяция (Interpolation)
  • Синхронизация, электронный редуктор (Gear)
  • Точное поддержание скорости вращения (шпиндель станка)
  • Электронный кулачок (Cam)
  • Программируемый логический контроллер.

Компоненты сервосистемы

В общем случае сервосистема (Motion Control System) может состоять из следующих устройств:

  • Серводвигатель (Servo Motor) с круговым датчиком обратной связи по скорости (он же может выполнять функцию датчика положения ротора)
  • Серворедуктор (Servo Gear)
  • Датчик положения исполнительного механизма (например, линейный датчик координаты оси подач)
  • Сервопривод (Servo Drive)
  • Сервоконтроллер (Motion Controller)
  • Операторский интерфейс (HMI).

Варианты аппаратно-программной реализации сервосистемы

  • Сервосистема на базе ПЛК (PLC-based Motion Control)
    • Функциональный модуль управления перемещением добавляется в корзину расширения ПЛК
    • Автономный сервоконтроллер
  • Сервосистема на базе ПК (PC-based Motion Control)
    • Специальный софт Motion Control для планшетного ПК с пользовательским интерфейсом (HMI)
    • Programmable Automation controller (PAC) с функцией управления перемещением
  • Сервосистема на базе привода (Drive-based Motion Control)
    • Преобразователь частоты со встроенным сервоконтроллером
    • Опциональное программное обеспечение, которое загружается в привод и дополняет его функциями управления движением
    • Опциональные платы с функциями управления движением, которые встраиваются в привод.

Типы серводвигателей

  • Синхронные

    Компактные бесщёточные серводвигатели с возбуждением от постоянных магнитов (вентильные), обеспечивающие высокую динамику и точность.

  • Асинхронные

    Приводы главного движения и шпинделей инструментальных станков.

  • Прямой привод (Direct Drive)
  • Прямой привод не содержит промежуточных передаточных механизмов (шарико-винтовых пар, ремней, редукторов):

    • Линейные двигатели (Linear Motors) могут поставляться вместе с профильными рельсовыми направляющими
    • Моментные двигатели (Torque Motors) — синхронные многополюсные машины с возбуждением от постоянных магнитов, с жидкостным охлаждением, ротор с полым валом. Обеспечивают высокую точность и мощность на низких оборотах.

Преимущества серводвигателей

  • Высокое быстродействие, динамика и точность позиционирования
  • Высокомоментные
  • Малоинерционные
  • Большая перегрузочная способность по моменту
  • Широкий диапазон регулирования
  • Бесщёточные.

Преимущества линейных приводов

Отсутствие кинематических цепей для преобразования вращательного движения в линейное:

  • Меньше инерционность
  • Нет зазоров
  • Меньше температурные и упругие деформации
  • Меньше износ и снижение точности при эксплуатации
  • Меньше потери на трение – выше КПД.

Точность

Микронная точность требуется в металлообрабатывающих станках с ЧПУ, а в штабелёрах достаточно и сантиметра. От точности зависит выбор серводвигателя и сервопривода.

  • Точность позиционирования
  • Точность поддержания скорости
  • Точность поддержания момента.

Приводы и двигатели постоянного тока

Электродвигатели

FILED UNDER : IT

Submit a Comment

Must be required * marked fields.

:*
:*