admin / 14.04.2018

Фотографии Вселенной из космоса: такого чуда вы еще не видели!

.

Вселенная фото глазами телескопа Хаббл HD (Hubble)

Заснят небольшой кусочек вселенной. На этой фотографии, снятой телескопом Хаббл, изображено тысячи галактик. Масштабы впечатляют! Теория «большого взрыва» не может объяснить факт того, что материя Вселенной слишком глыбистая. (Вселенная фото №1)

Фотография открывает вид на великолепное скопление звезд NGG 346. На фото, сделанным с помощью Хаббла, видны поразительные детали, которые сформированы потоками газа и пыли, исходящими от горящих звезд. Все эти звезды, как будто охваченные вихрем, находятся на расстоянии от земли 210 000 световх лет. Узнайте больше прочитав статью «Как устроена вселенная? Начало вселенной.»(Вселенная фото №2)

На фотографии, которая напоминает вид бабочки, изображена умирающая звезда. Крылья, это извергающийся газ из небесного тела. Температура зашкаливает до 20 000 градусов по Цельсию. Имя этой планетарности NGC 6302 илежит она в нашей галактике Млечный Путь. Масштабы события поражают, если учесть сколько таких умирающих звезд во вселенной. (Вселенная фото №3)

Крабовидная туманность. Еще один удивительный снимок структуры взорвавшейся звезды. Находиться она на расстоянии 6500 световых лет от земли. Читать статью «Вселенная обречена» (Вселенная фото №4)

Эти галактики сфотографированы телескопом Hubble в 2011 году. Отчетливо видно взаимодействие большей галактики с меньшей.Читать статью «Галактики – необъяснимые спирали.» (Вселенная фото №5)

Это формирования из газа, пыли называется туманность Киля.(Вселенная фото №6)

Самое большое фото снятое телескопом Хаббл на данный момент это галактики Усики. На фото видно столкновение двух галактик. Читать статью «Неопровержимые свидетельства молодости мира.» (Вселенная фото №7)

Ученые ищут ответ на вопрос как образуются новые звезды. Этот снимок молодых звездных скопления NGC 2024 в центре туманности Пламя и туманности Ориона поставили ученых в тупик. Читать статью «Звезды подтверждают Библейское сотворение.» (Вселенная фото №8)

Abell 33 планетарная туманность в созвездии Гидра, на расстоянии 2500 лет от Земли.

Как выглядит Вселенная – грандиозные масштабы

Это фото показывает пример трупа умершей звезды с удачно расположенной на окраине яркой соседней звезды. Читать статью «В галактике «Млечный Путь» обнаружены молодые голубые звезды.» (Вселенная фото №9)

Галактики М74. Величественно! (Вселенная фото №10)

Строение и жизнь Вселенной

А.В. Галанин © 2012

Глава 5. Строение и свойства Метагалактики

 

Галактики в своем немыслимом множестве населяют космическую систему более высокого уровня – Метагалактику. Метагалактика – это вся видимая часть Вселенной. Даже свет с ее окраин доходит до центра, в котором находимся мы, за много миллиардов световых лет. Структура Метагалактики видна на схемах, приведенных ниже. Здесь яркие пятна и тяжи – это не звезды, а скопления галактик. Модель показывает, насколько неравномерно распределены галактики в Метагалактике.

Метагалактика, если судить по красному смещению линий поглощения химических элементов в спектрах света от дальних галактик, расширяется, а галактики убегают от нас со скоростями, которые тем больше, чем дальше от нас находятся эти галактики. Самые дальние улетают от нас со скоростью большей, чем 300000 км/сек (их скорость больше скорости света в вакууме!). Поэтому нам видны только те галактики, скорость удаления которых меньше скорости света. Если бы мы переместились на несколько миллиардов световых лет, то все равно оказались бы в центре наблюдаемой Метагалактики. Движение галактик связано с раздвижением пространства, о чем я уже писал в своих статьях, размещенных на этом сайте.

Если бы не чудовищные расстояния в миллиарды световых лет, то эту структуру можно было бы спутать с нервной тканью, в которой клетки связаны в систему отходящими от них нейронами, по которым передаются нервные импульсы. Что удерживает галактики в ярких узлах (скоплениях галактик) и в длинных тяжах? Скорее всего, силы гравитации. А что раздвигает пространство (вакуум) между скоплениями галактик? Скорее всего, силы антигравитации.

Модель Метагалактики. Схема с сайта: http://kosmos-x.net.ru/

Один из узлов Метагалактики, на котором видно, насколько неравномерно распределены галактики в Метагалактике. Фото с сайта: http://kosmos-x.net.ru/forum/2-1327-14

Млечный Путь (наша Галактика) в Метагалактике выглядит как маленькая, едва заметная микрозвёздочка. А вообще структура Метагалактики похожа на очень сложную структуру живой материи. Если по этим волокнам передаются некие импульсы, то Метагалактика – это сложнейшее кибернетическое устройство, способное накапливать и обрабатывать информацию. Может быть, информация, которую мы собираем в течение всей нашей жизни, после смерти тоже накапливается в этой структуре Метагалактики? Не к этой ли информационной структуре подключен и наш мозг в течение жизни? Фото с сайта: http://www.corolla.ws/

Недавно группой европейских астрономов был открыт гигантский протогалактический шар необычного типа. Этот шар состоит из плазмы, он больше самой крупной известной галактики и в 5 миллионов раз больше солнечной системы. Этот шар движется со скоростью 750 км/сек., оставляя за собой светящийся хвост. Шар находится в скоплении галактик Abell 3266, содержащем более ста миллионов галактик. Шар удерживается гравитационными силами находящейся в нем темной материи, или антигравитацией раздвигающегося вакуума-эфира. Шар постоянно теряет массу. По подсчетам авторов исследования, на оставляемый им хвост каждый час уходит масса, приблизительно равная массе Солнца. (Выпуск новостей: RealAudio WinMedia MP3).

Системы галактик

Гравитационные системы образуются не только из звезд и планет, но и из галактик. Астрономы уже несколько десятилетий наблюдают в космосе якобы "столкнувшиеся" галактики. Но возникает вопрос: а всегда ли это простое грубое "лобовое" столкновение? Оказывается, не все так просто. Некоторые галактики действительно так тесно взаимодействуют друг с другом, что вещество из одной перетекает в другую. Нередко при таком столкновении разрушаются спиральные структуры галактик, а некоторые даже вытягиваются в результате такого столкновения в подобие длинного космического жгута. Картины эти, на первый взгляд, конечно, жутковатые, как говорят, не для слабонервных.

Но все же это не столкновения галактик, а их гравитационные взаимодействия, так как в результате таких столкновений-взаимодействий входящие в эти галактики звезды и планеты друг с другом сталкиваются крайне редко. Нот при этом во взаимодействующих галактиках могут образовываться новые гравитационные звездные и планетные системы. Космические тела из разных галактик при этом могут сближаться на такие расстояния, что эти тела попадают в гравитационные ловушки друг к другу и, вращаясь вокруг общего центра или вокруг более массивных тел, они уже никак не могут разлететься и образуют новые гравитационные системы – так, что в одной планетной системе могут оказаться планеты, которые прежде находились в разных галактиках.

Благодаря съемкам телескопа Хаббл, выяснилось, что "столкновения" галактик – весьма распространенное в Метагалактике явление. На этой фотографии видно, как две спиральные галактики гравитационно тесно взаимодействуют друг с другом. Фото с сайта: http://forum.planar.biz/index.php?showtopic=10527

Это скопление галактик называется Секстет Сейферта. Здесь шесть гравитационно связанных друг с другом галактик, вероятно, вращаются вокруг общего центра масс. Заметьте – эти галактики находятся не в одной плоскости. Спиральные галактики взаимодействуют с эллиптическими и шаровыми. Фото с сайта: http://www.starblink.ru/

Скопления галактик бывают очень многочисленными. В таких рыхлых, как на фотографии ниже, скоплениях галактики тоже наверняка связаны гравитационно в единую систему. Структурирование во Вселенной проявляется на многих уровнях: атомного ядра, атома, молекулы, кристалла, малого космического тела (астероида), большого космического тела – планеты-звезды, гравитационной планетной системы, гравитационной системы галактики, гравитационной системы скопления галактик, …, Метагалактики.

Скопление галактик. Фото с сайта: http://www.bugabu.ru/index.php?newsid=8128

Согласно законам кинематики, галактики должны были бы распадаться, так как галактическое вещество вращается вокруг их центра с большой скоростью. При этом должны возникать центробежные силы, и вещество на периферии галактики должно выбрасываться за ее пределы и рассеиваться в пространстве Метагалактики.

Кроме того, для создания наблюдаемого вращения галактик гравитационное притяжение в их центре должно быть значительно больше, чем то, которое наблюдают астрономы. Чтобы создать необходимые центростремительные силы и поддерживать вращение с теми скоростями, которые в галактиках наблюдаются, их центральная масса должна быть в несколько раз больше наблюдаемой. Так что для создания наблюдаемого вращения в галактиках не хватает массы.

Астроном Вера Рубин (Vera Rubin) заметила эту аномалию в конце семидесятых годов прошлого века. Чтобы объяснить это, физики предположили, что во Вселенной имеется больше вещества, чем мы можем наблюдать. Однако пока никто не смог объяснить, чем же является эта “темная материя”, имеющая такую большую массу. Это очень неприятный пробел в нашем понимании устройства Вселенной. Астрономические наблюдения свидетельствуют о том, что темная материя должна составлять примерно 90% от "видимой" массы Вселенной.

Можно предположить, что эта недостающая темная масса сосредоточена в черных дырах. Кроме того, массу может иметь и вакуум, или эфир. Только плотность ее в вакууме слишком мала. Вероятно, вакуум (эфир) содержит ту самую массу со знаком (–), которой недостает, чтобы понимать гравитацию как симметричное природное явление (взаимодействие), подобное электромагнетизму. Возможно, именно об этом эфире говорил Никола Тесла: "Из эфира наш мир вышел, и эфир в конце концов его поглотит".

Некоторые скопления галактик в видимой части Метагалактики. Схема Richard Powell с сайта: http://i-innomir.ru/posts/293

Темная энергия – одна из самых известных и наиболее трудноразрешимых проблем физики.

В 1998 г. астрономы обнаружили, что Вселенная расширяется не с постоянной, а со все возрастающей скоростью. До этого считалось, что после Большого взрыва расширение Вселенной постепенно замедляется. Разумного объяснения этому увеличению скорости расширения Метагалактики до сих пор не найдено. Одно из предположений может быть таким: за это явление ответственно некое свойство пространства (вакуума, или эфира). Космологи назвают это свойство "темной энергией". Но все попытки идентифицировать темную энергию потерпели неудачу.

По-моему, это та энергия, которая раздвигает пространство, это та самая таинственная гравитация со знаком минус, которую давно ищут космофизики и не находят. Когда плотность вещества в пространстве-вакууме меньше некоторого предела, пространство-вакуум начинает раздвигаться. Препятствует этому раздвижению вещество, которое тормозит это раздвижение.

20 потрясающих фотографий нашей Вселенной

Вещество, напротив, стягивает пространство.

Если это предположение верно, то на внешней границе Солнечной системы космические аппараты могут столкнуться с эффектом раздвижения пространства Галактики. Чтобы преодолеть расстояние в метр, им там придется преодолеть чуть большее расстояние, так как пока они движутся, это расстояние из-за раздвижения вакуума-эфира несколько увеличится. В пределах Галактики скорость раздвижения пространства очень небольшая, и этот эффект будет едва заметен. Но вот за пределами Галактики он уже должен быть весьма ощутим.

Наибольшим этот процесс раздвижения будет внутри вакуумных "пузырей" Метагалактики, в которых вещества очень мало. Разбегание галактик в Метагалактике наверняка обусловлено этим раздвижением пространства-вакуума-эфира в метагалактических пустотах.

Четыре года назад были обнаружены шесть частиц, которые, вообще-то, если следовать физической теории, не должны были существовать, их назвали тетранейтронами. Это четыре нейтрона, которые находятся в связи друг с другом вопреки законам физики. В лаборатории выстреливали ядра бериллия в небольшую углеродную цель и анализировали их траектории с помощью детекторов. При этом исследователи ожидали увидеть, что четыре разных нейтрона попадут в разные детекторы. Вместо этого они обнаружили только одну вспышку света в одном детекторе. Энергия этой вспышки показала, что все четыре нейтрона попали в один и тот же детектор.

Согласно традиционной физике элементарных частиц, тетранейтроны просто не могут существовать, так как согласно принципу Паули, в одной системе не может существовать даже двух протонов или двух нейтронов, которые могли бы обладать одинаковыми квантовыми свойствами. Ядерная сила не может (точнее, не должна по теории) удержать даже два одиночных нейтрона, не говоря о четырех. Маркес и его сотрудники, открывшие это явление, были ошеломлены полученными результатами и “похоронили” эти данные, сообщив в печати о некоей вероятности открытия тетранейтронов в будущем.

Ведь если начать менять законы физики, чтобы обосновать связь четырех нейтронов, то в физике возникнет хаос. Признание существования тетранейтронов означало бы, что сочетание элементов, образовавшихся после Большого взрыва, не согласуется с тем, что мы сейчас наблюдаем. И, что еще хуже, сформированные элементы становятся слишком тяжелыми для космоса. В этом случае Вселенная, вероятно, сколлапсировала бы прежде, чем стала расширяться. Так считает Наталья Тимофеюк – теоретик из Великобритании.

Но имеются и другие доказательства, говорящие в пользу того, что материя может состоять из многочисленных нейтронов, это – нейтронные звезды. Они содержат огромное количество связанных нейтронов, и это означает, что когда нейтроны собираются в большую массу, в действие вступают какие-то необъяснимые пока силы. Ведь по сути, нейтронная звезда, массой во много раз превосходящая Солнце, по плотности является ядром одного суператома. Интересно, что представляет собой электронное облако вокруг этого суперядра?

Сотовая структура Метагалактики. Фото с сайта: http://kosmos-x.net.ru/

Высшим проявлением гравитации является сотовая структура Метагалактики. На фотографии слева отдельные едва заметные точки – это галактики, а более светлые пятнышки – скопления галактик. Эта странная структура (если бы не ее размеры в сотни миллиардов световых лет) очень напоминает нервную ткань живого организма.

На уровне структуры Метагалактики в равной степени проявляется и гравитация, и антигравитация. Классики диалектического материализма по этому поводу сказали бы: "Это – яркое проявление диалектического закона единства и борьбы противоположностей". А противоположностями здесь выступают гравитация (–), которая раздвигает вауум-эфир, и гравитация (+), которая стягивает его и стремится удержать, набросив на него своеобразную "сетку" вещества, состоящую из скоплений галактик.

Интересно, порвет антигравитация эту сетку по мере раздвижения метагалактических пузырей, или не сможет порвать. Если не сможет, то раздвижение вакуума-эфира прекратится, и Вселенная в конце концов стабилизируется, если же сетка порвется, то вакуум-эфир раздвинется и "ошметки" этой сети в виде небольших групп галактик и одиночных галактик будут удалены друг от друга на такое расстояние, что даже обмениваться друг с другом световыми сигналами не смогут, – они окажутся друг от друга за "метагалактическим горизонтом".

Потом расширяющийся вакуум-эфир разорвет и галактики на отдельные звездные системы. Вселенная все больше будет превращаться в вакуум-эфир, что и предсказывал Никола Тесла. При таком ходе событий масса всех элементарных частиц резко уменьшится, и вакуум поглотит вещество.

А может, в Метагалактике все же есть механизм, который способен прекратить этот грустный процесс поглощения вещества вакуумом-эфиром? Предполагаю, что такой механизм есть, только мы пока о нем ничего не знаем. И механизм этот – постоянное рождение вещества из вакуума-эфира через чёрные дыры. Это – круговорот материи во Вселенной. Об этом мы порассуждаем в последней главе этой монографии, посвященной чёрным дырам. Но для этого нам придется отказаться от теории большого взрыва и одномоментного "рождения" Вселенной в результате этого взрыва.

Метагалактика в современном представлении как результат Большого Взрыва. Рисунок с сайта: http://www.bugabu.ru/index.php?newsid=8128

Если верить в теорию Большого Взрыва, то необъяснима так называемая "проблема горизонта Метагалактики ". Суть ее в том, что наша Вселенная оказывается необъяснимо едина. Посмотрите на пространство от одного края видимой Вселенной до другого, и вы увидите, что на всем протяжении фон микроволнового излучения в космосе имеет одинаковую температуру. Это удивительно, поскольку эти два края находятся на расстоянии 28 миллиардов световых лет друг от друга, а нашей Вселенной, если следовать теории Большого Взрыва, всего лишь 14 миллиардов лет. Физика утверждает, что ничто не может двигаться со скоростью, превышающей скорость света. Поэтому невозможно, чтобы тепловое излучение за 14 миллиардов лет смогло пропутешествовать между двумя горизонтами и уравновесить горячие и холодные зоны, образовавшиеся во время Большого взрыва, установив то тепловое равновесие, которое мы видим сейчас.

Для этого тепловое излучение должно было хотя бы раз пересечь расстояние в 28 миллиардов световых лет.

С научной точки зрения, одинаковая температура фонового излучения является аномалией. Объяснить ее можно было бы признанием того, что скорость света в Метагалактике непостоянна. Но даже в этом случае мы все равно бессильны перед вопросом: почему она непостоянна?

Я не ставил перед собой цель ответить на вопрос, что такое гравитация. На этот вопрос наука ответит еще нескоро. Но мне хотелось подойти к границе познания и попытаться заглянуть за эту границу хотя бы краешком глаза. Возможно, в какой-то степени мне это удалось.


При написании данной странички была также использована информация с сайтов:

1. Википедия. Адрес доступа: http://ru.wikipedia.org/wiki/

2. http://www.bugabu.ru/index.php?newsid=8128

 

На что похож край Вселенной?

Есть порог, за который мы не можем выйти, есть вещи, которых мы никогда не узнаем. Но кое-что мы знаем, и у нас есть мощные инструменты: наука, воображение, анализ. 13,8 миллиарда лет назад Вселенная, какой мы ее знаем, родилась в горячем Большом Взрыве. Со временем пространство расширилось, материя прошла через гравитационное притяжение и получилось то, что получилось. Но всему, что мы видим, есть предел.

Вся известная Вселенная на одной картинке

На определенном расстоянии галактики исчезают, звезды меркнут и никакие сигналы далекой Вселеннойувидеть нельзя. Что лежит за этим пределом? Если Вселенная ограничена в объеме, есть ли у нее граница? Достижима ли она? На что похож край Вселенной?

Чтобы ответить на этот вопрос, нужно начать с того, где мы находимся сейчас, и попытаться заглянуть так далеко, как сможем.

Вселенная полна звезд буквально у нас под боком. Но если пройти больше 100 000 световых лет, вы покинете Млечный Путь. За ним будет море галактик: возможно, два триллиона галактик в общей сложности можно найти в нашей наблюдаемой Вселенной. Они представлены в большом разнообразии типов, форм, размеров и масс. Но когда вы заглядываете все дальше и дальше, вы начинаете подмечать кое-что необычное: чем дальше галактика, тем вероятнее, что она будет меньше, легче и ее звезды будут голубоватыми.

Это обретает смысл в контексте того, что у Вселенной было начало: рождение. День рождения Вселенной — это Большой Взрыв. Галактика, которая относительно близка к нам, будет близка по возрасту к самой Вселенной. Но если мы смотрим на галактику за миллиарды световых лет, свет от нее должен был пройти миллиарды лет, чтобы достичь наших глаз. Галактика, свет которой будет идти к нам 13 миллиардов лет, будет возрастом меньше миллиарда лет, поэтому чем дальше мы смотрим, тем дальше назад во времени мы заглядываем.

Снимок Hubble eXtreme Deep Field (XDF), самое глубокое изображение далекой Вселенной. На этом снимке тысячи галактик, находящихся на огромном расстоянии от нас и друг от друга. Но чего не увидишь обычным взглядом, так это того, что у каждой галактики есть ассоциированный с ней спектр, в котором облако газа поглощает свет определенной длины волны в зависимости от физики атома. По мере расширения Вселенной длины волн растягиваются, поэтому далекие галактики кажутся краснее, чем являются на самом деле. Эта физика позволяет нам определять расстояние до них, и когда мы определяем расстояния, самые далекие галактики оказываются самыми юными и маленькими.

Помимо галактик мы ожидаем найти там первые звезды, а затем ничего, кроме нейтрального газа, потому что Вселенной не хватало времени, чтобы сбить вещество в достаточно плотное состояние для формирования звезд. Миллионы лет назад излучение во Вселенной было настолько горячим, что нейтральные атомы не могли образоваться, и фотоны непрерывно отскакивали от заряженных частиц. Когда сформировались нейтральные атомы, свет просто тек по прямой вечно, не подвластный ничему, кроме расширения Вселенной. Открытие этого послесвечения — космического микроволнового фона — более 50 лет назад стало окончательным подтверждением Большого Взрыва.

Там, где мы сейчас, мы можем смотреть в любом направлении, которое выберем, и видеть там одну и ту же разворачивающуюся космическую историю. Сегодня, спустя 13,8 миллиарда лет после Большого Взрыва, мы имеем звезды и галактики в их нынешней форме. Раньше галактики были меньше, синее, моложе и менее развитыми. До них были первые звезды, а еще раньше — просто нейтральные атомы. До нейтральных атомов была ионизированная плазма, а еще раньше — свободные протоны и нейтроны, спонтанное создание материи и антиматерии, свободные кварки и глюоны, все нестабильные частицы Стандартной модели и, наконец, момент самого Большого Взрыва. Смотреть дальше в космос — значит, смотреть дальше назад во времени.

Хотя это определяет нашу наблюдаемую Вселенную — с теоретической границей Большого Взрыва, расположенной в 46,1 светового года от нашего нынешнего положения — реальной границей космоса это не является. Вместо этого мы имеем просто границу во времени; есть предел тому, что мы можем видеть, поскольку скорость света позволила информации продвинуться только на это расстояние за 13,8 миллиарда лет. Это расстояние превышает 13,8 миллиарда световых лет, потому что ткань Вселенной расширилась (и продолжает расширяться), но все еще ограничена. Но как насчет того, что было до Большого Взрыва? Что вы увидели бы, если бы каким-то образом заглянули на крошечную долю секунды до того, как Вселенная оказалась на пике своей самой высокой энергии, горячей и плотной, полной материи, антиматерии и излучения?

Вы увидели бы, что существовало состояние космической инфляции: когда Вселенная расширялась очень быстро и в ней преобладала энергия, присущая самому пространству. Пространство расширялось экспоненциально в это время, когда оно было вытянуто плоским, когда оно имело везде одни и те же свойства, когда флуктуации квантовых полей, присущих пространству, пронизывали всю Вселенную. Когда инфляция завершилась, горячий Большой Взрыв наполнил Вселенную материей и излучением, породив ту часть Вселенной — наблюдаемую Вселенную — которую мы видим сегодня. 13,8 миллиарда лет спустя мы здесь.

Но стоит отметить, что нет ничего особенного в нашем месте, ни в пространстве, ни во времени. Тот факт, что мы можем видеть за 46 миллиардов лет, не делает эту границу или место чем-то особенным; это просто предел того, что мы можем видеть, сам по себе. Если бы мы могли каким-то образом сделать «снимок» всей Вселенной, выйти за пределы наблюдаемой части, мы увидели бы все то же самое, что имеет наша Вселенная. Мы увидели бы большую космическую паутину галактик, скоплений, нитей и космических пустот, выходящих далеко за пределы относительно небольшого региона, который мы можем видеть. Любой наблюдатель в любой области увидели бы точно такую же Вселенную, что и мы.

Отдельные детали будут, конечно, разными. Будет другая солнечная система, галактика, местная группа и так далее. Но Вселенная сама по себе не является ограниченной в объеме; ограничена только наблюдаемая часть. Именно граница во времени — Большой Взрыв — отделяет нас от всего остального. Мы можем подойти к этой границе только с применением телескопов (которые могут увидеть раннюю Вселенную) и теории. Пока мы не выясним, как обойти стремящийся вперед поток времени, это будет нашим единственным подходом, способом увидеть «край» Вселенной. Но космос безграничен.

2921 views

Фото вселенной: самые красивые уголки по версии GreenWord

Видимо, вселенная бесконечна и есть в ней такие места, о которых мы ничего не знаем, ведь свет от них, не смотря на свою огромную скорость, попросту ещё не долетел до нашей планеты.

Фото вселенной: самые красивые уголки по версии GreenWord

Что там находится за горизонтом наблюдаемой вселенной пока никому не известно. Возможно что-то невероятно красивое… Но и в пределах видимой вселенной есть на что посмотреть благодаря таким мощным телескопам, как Хаббл.

Немного теории для возможности самостоятельного изучения объектов, представленных на фотографиях.

Названия всех объектов состоят из латинских заглавных букв и цифр. Буква обозначает каталог, в котором значится объект, а цифра — номер его в этом каталоге. Объект может значиться сразу в двух каталогах, тогда второй я указывал в скобках.

Список каталогов:

NGC — New General Catalogue — Новый общий каталог
M — Catalog of Nebulae and Star Clusters (Messier catalogue) — Каталог туманностей и звёздных кластеров (Каталог Мессье)
UGC — Uppsala General Catalogue — Общий каталог обсерватории Уппсала
ESO — European Southern Observatory — Каталог европейской южной обсерватории
IRAS — Infrared Astronomical Satellite — Инфракрасная орбитальная обсерватория

Я не буду утруждать вас импровизированными названиями, которые имеют многие из представленных объектов, не стану вдаваться в их местоположения, возраст и состав. По-моему, все эти характеристики не слишком важны в контексте заметки. Уверен, что все умеют пользоваться гуглом и смогут найти подробную информацию о заинтересовавшем объекте самостоятельно, зная его формальное название.

AM 0644-741 (IRAS 06443-7411)

ESO 510-g13

Lynx Arc

NGC 2207

NGC 3034 (M82)

NGC 3372

NGC 4038/NGC 4039

NGC 4594 (M104)

NGC 5194 (M51)

NGC 5457 (M101)

UGC 10214

NGC 6611 (M16)

NGC 5866 (M102)

NGC 6334

Фотографии взяты с сайтов Space Telescope и HubbleSite. Используйте их для поиска своих любимых уголков вселенной. Удачных исследований!

Фотография Вселенной…

Вот, сфотографировал на «мыльницу» несколько галактик 🙂 Шутка, конечно, но картинки взял довольно «далеко», а комменты — мои, насколько квалифицированно я могу их сделать…


Спиральная галактика NGC 5792

Спиральная галактика NGC 5792, она выглядит довольно типично и видна почти с ребра. Правда, вид закрывает красный карлик из нашей собственной галактики Млечного Пути. Этот карлик менее массивен, чем Солнце, и имеет спектральный класс M0. Карлики класса M — вообще самый распространённый тип звёзд в нашей галактике и её окрестностях, их не менее 75% от общего количества в 200 000 000 000 (200 млрд) звёзд Млечного Пути (200 млрд — нижняя оценка, возможно, звёзд в нашей галактике больше). Разумеется, неворужённым глазом ни безымянного карлика, ни галактику NGC 5792 увидеть невозможно. Одно время красные карлики класса M, в связи с их многочисленностью, были даже кандидатами на «тёмную материю», позднее эта идея была забракована как несостоятельная.


Галактика M31, туманность Андромеды

Знаменитая галактика M31, более известная как туманность Андромеды. Это — ближайшая к нам спиральная галактика, находящаяся «всего-то» в 2 млн. световых лет от нас. Вместе с галактикой Треугольника (2.4 млн. световых лет) и нашей они действительно образуют в пространстве почти равнобедренный «треугольник», противоположной основанию вершиной которого является наша галактика.В безлунную ночь Андромеда видна невооружённым глазом, она занимает почти 3 градуса в небе, это в 6 раз больше, чем полная луна. Но, разумеется, хорошей видимости мешает атмосфера.

30 потрясающих изображений, чтобы объяснить ребёнку, каково наше место во Вселенной

Кроме Млечного Пути, Андромеды и Треугольника в местную группу галактик входит около 50 карликовых галактик-спутников, в них примерно 700 000 000 000 звёзд, расположенных в радиусе до 5 миллионов световых лет. В пределах 20 миллионов световых лет находится ещё 5 таких местных групп. Для сравнения — диаметр нашей галактики составляет 90 тысяч световых лет, а «толщина» её диска в районе Солнца «всего» порядка 2 тысяч световых лет, в центре, правда, есть «утолщение», составляющее гораздо большую величину порядка 25 тысяч световых лет в диаметре.


Спиральная галактика Messier 90 со спутником — карликовой галактикой IC 3583

Спиральная галактика Messier 90 со спутником — карликовой галактикой IC 3583. M90 — одна из больших спиральных галактик в скоплении Девы, в котором живём и мы с вами. Всего в нашем скоплении насчитывается порядка 200 групп и примерно 2500 таких вот крупных галактик. «Карликовых» галактик-спутников намного больше, их в скоплении примерно 50000. В частности, у нашей собственной Галактики известно 12 более мелких галактик-спутников. Ну а всего в нашем скоплении порядка 200 000 000 000 000 (200 триллионов) звёзд. Большинство из них находится в не такой уж широкой «полосе» с толщиной порядка 10 миллионов световых лет. В пределах 200 миллионов световых лет можно выделить ещё 2 больших кластера-скопления.


кластер галактик в созвездии Персея

А это — кластер из довольно «старых» эллиптических галактик в созвездии Персея. Их желтоватый оттенок, легко отличающий их от случайно оказавшихся «рядом» звёзд, обусловлен, в основном, большим количеством старых звёзд, таких как красные гиганты.


Вся Вселенная

Ну и наконец, «фото всей Вселенной», разумеется, условное. Наше сверхскопление Девы, конечно же, на самом деле не находится ни в каком «центре», тем более, этого центра и не существует. На картинке представлена Вселенная в радиусе 14 миллиардов световых лет, то есть, «весь» её видимый объём, ведь возраст Вселенной и оценивают примерно в эту цифру, так что не существует «более старых» источников света.

Тем не менее, можно оценить, что в нашей Вселенной имеется примерно 10 000 000 сверхскоплений, 25 000 000 000 групп галактик, 350 000 000 000 крупных и 7 000 000 000 000 карликовых галактик. Все вместе они содержат примерно 30 000 000 000 000 000 000 000 (3*1022) звёзд.

 Оригинал статьи и возможные изменения — на сайте


теги: числастатистикакартинкавселенная


31.10.2010, 22:31; рейтинг: 12956

FILED UNDER : IT

Submit a Comment

Must be required * marked fields.

:*
:*