admin / 28.03.2018
Содержание
Предлагаю ознакомиться с основными методами синтеза звука: субтрактивный, таблично-волновой, FM, аддитивный, физическое моделирование, то есть раскрыть понятия их происхождения.
Субтрактивный основа его это генерация звукового сигнала с богатым спектром и дальнейшей фильтрацией.
Таблично-волновой разновидность сэмплерного метода, когда записывается не все звучание целиком, а его отдельные фазы — атака, начальное затухание, средняя фаза и концевое затухание.
FM в основу положена взаимная модуляция по частоте между несколькими синусоидальными генераторами.
Аддитивный основан на утверждении Фурье о том, что любое периодическое колебание можно представить в виде суммы чистых.
Выбор метода всегда зависит от того, какой звук нужен. Например FM хорош для pad и lead, субтрактивный и таблично-волновой подойдет для создания баса, lead, pad, fx. Процесс создания с помощью FM синтезаторов, как мне кажется самый сложный. А вот субтрактивный и таблично-волновой давольно-таки простые, достаточно понять основу и можно создавать собственные звуки уже сейчас.
Что же нужно знать при использовании этих методов синтеза? Во-первых, стандартный синтезатор состоит из: Осциллятора – генераторы звука, здесь обычно используются синус, пила, треугольник, шум и так далее.
Огибающей (Envelope), она служит для контроля параметров на протяжении времени. Обычно ADSR типа. Расшифровывается: А — атака, время, когда громкость ноты достигнет максимального уровня. D – спад (Decay), время, в течение которого происходит переход от максимального уровня к уровню Sustain. S – сустейн (Sustain), определяет уровень звука, во время удержания клавиши. R – затухание (Release) окончательное затухание сигнала, определяет время нужное для окончательного спада уровня ноты до нуля, после того как клавиша отпущена.
LFO (генератор низкочастотных колебаний) используется в качестве источника модуляции для различных параметров синтеза.
Фильтры, служат для среза определенных частот.
Пример синтезирование звука с помощью Cakewalk Z3TA
И так перейдем к созданию lead с помощью vst синтезатора Cakewalk Z3TA. Я не зря выбрал именно данный синтезатор, потому что он входит в топ одних из лучших созданных виртуальных синтезаторов мира.
Первое, нужно выбрать форму волны для создания звука. Для этого выполните следующее действие: в WAVE в выпадающем меню для первого и второго осциллятора выберите тип волны Vintage Saw 1. Для третьего осциллятора Vintage Saw 3.
Далее назначте режим MODE для первого и второго MULTI,SYNC, OCTAVE поставте на -1, SPREAD на 45% и панорамируйте влево, право. Для третьего осциллятора режим MODE NORNAL, FREE, а PHASE на 90.
Теперь нужно настроить секцию фильтров, выставите параметры как показаны на рис. ниже. В данном случае выбрал тип фильтрации 24 db на октаву
Следующими действиями выставите значения, показанные на рис. Здесь настроил Envelope, так чтобы атака была острая, а релиз и всё остальное по минимуму. В SOURSE назначил возможность управлять всеми фильтрами один регулятором включив ON.
Как видите на этом всё, для данного звука добавил только эффект задержки и реверберации, времени было потрачено не более 15 минут. Можете использовать пресет в своих проектах.
Роман Петелин
Модульные синтезаторы появились в 60-х годах прошлого века. От синтезатора любого другого типа модульный отличается наличием таких качеств, как гибкость архитектуры и масштабируемость. Концепция проста: вы покупаете некие относительно небольшие (как по цене, так и по размеру) модули, содержащие в себе различные узлы, применяемые для синтеза звука (осцилляторы, генераторы низкой частоты, усилители, модуляторы и т.п.). Соединяя эти модули между собой посредством специальных кабелей (patch cords), получаете синтезатор нужной вам архитектуры. Сложность архитектуры и, соответственно, возможности синтезатора определяются количеством объединенных модулей. На рисунке показан синтезатор, собранный из модулей серии Modular Moogs.
Modular Moogs
Синтезаторные модули этой серии производились в период с 1967 по 1981 год фирмой Moog. По существу, подобный модульный синтезатор представлял собой специализированную аналоговую вычислительную машину. Глядя на фотографию, можно попытаться представить вес синтезатора. Кроме того, эти синтезаторы и стоили очень дорого. Обычно их заказывали или студии, или очень известные исполнители.
Много воды утекло с тех пор, но модульные синтезаторы не вымерли в ходе эволюции электронных музыкальных инструментов. Они сумели приспособиться. К числу наиболее доступных по цене (в Петербурге его можно заказать примерно за $700) относится модульный виртуальный синтезатор Nord Micro Modular фирмы Clavia Digital Musical Instruments, который выпускается с 1998 года.
Nord Micro Modular
Самое интересное, что как таковых синтезаторных модулей вы не обнаружите. Небольшая коробочка весом 700 грамм — вот и все, что можно осязать. Остальное — это программы, загружаемые в синтезатор и в управляющий им ПК. Сами же модули переместились в виртуальную реальность, их можно увидеть только на экране монитора.
Коммутация виртуальных модулей Nord Micro Modular для реализации звучания маримбы
По мере роста производительности PC потребность в специализированной аппаратной поддержке модульных, да и вообще любых музыкальных виртуальных синтезаторов и сэмплеров уменьшается.
Сейчас существует множество модульных синтезаторов, реализованных программно. Одной из лучших по праву считается программа Reaktor фирмы Native Instruments. Ох, и не случайно такое название! Это и в самом деле синтезатор с ядерной накачкой, реактор, в котором клокочет звук!
Если разобраться, Reaktor — это даже не синтезатор, а целая студия звукового дизайна. Идеология программы такова: в вашем распоряжении имеется неограниченное количество всех известных на сегодня разновидностей модулей, используемых для генерации и преобразования звука. Соединяя некоторые выходы одних модулей с определенными входами других, вы создаете любые электронные инструменты и устройства обработки звука.
FM-синтезатор, собранный в Reaktor
Регуляторы наиболее важных параметров этих устройств вынесены на панели управления.
Виртуальные синтезаторы, сэмплеры, микшеры, секвенсоры, процессоры эффектов, виртуальные звукозаписывающие устройства (настраиваемые на работу с входными аудиопортами звуковой карты) объединяются в объекты более высокого уровня — ансамбли.
Ансамбль из нескольких инструментов
При инсталляции Reaktor создает в системе свои виртуальные MIDI-порты. Каждый из инструментов ансамбля можно настроить на свой MIDI-канал, каждому пресету инструмента можно поставить в соответствие свой MIDI-инструмент. Таким образом, всей этой виртуальной студией можно управлять из любого музыкального редактора (Cakewalk, Cubase, Logic и др.), а на виртуальных инструментах можно играть с помощью MIDI-клавиатуры.
Если процессор компьютера не справляется с озвучиванием ансамбля в реальном времени, можно понизить в Reaktor внутреннюю частоту сэмплирования, а также выполнить запись всех MIDI-команд, поступающих от внешнего секвенсора и MIDI-клавиатуры, всех манипуляций с панелями управления. Далее есть смысл экспортировать записанную последовательность команд непосредственно в WAV-файл (звуковые данные будут пересчитаны), при этом качество рендеринга уже не будет зависеть от мощности процессора.
Reaktor можно использовать в целях звукового дизайна сэмплов с их последующей загрузкой в аппаратный или программный сэмплер. С помощью Reaktor вы можете обрабатывать любой сигнал, поступающий со входа звуковой карты, создавать различные вокодерные эффекты. Всех возможных областей применения этой программы просто не счесть.
Создать «с нуля» из элементарных модулей интересно звучащий инструмент или эффективно работающий ансамбль непросто. Для этого, как минимум, требуется понимать основы синтеза звуков. Можно, конечно, действовать и «методом научного тыка», но времени на такую работу уйдет неоправданно много. Кроме того, практически бесконечное число сочетаний модулей порождает соблазн непрерывного совершенствования результатов конструирования. Психологически трудно остановиться на достигнутом. Синтез новых звуков превращается в самоцель, а музыка отходит на второй план. Однако жизнь владельца виртуального синтезатора облегчается тем, что существует масса библиотек инструментов и ансамблей для Reaktor. Некоторые библиотеки входят в поставку программы, некоторые являются самостоятельными программными продуктами.
Качество звучания Reaktor, по признанию многих отечественных и зарубежных профессионалов, просто высочайшее. Программный синтезатор/сэмплер с качеством звучания профессиональных музыкальных инструментов ценовой категории от нескольких килобаксов — в чем тут подвох? Ни какого подвоха нет. Существует заблуждение, что звуковая студия на базе ПК дешева.
В действительности это не так, если учитывать истинную цену программного обеспечения. Кроме того, сам по себе компьютер тоже чего-то стоит. Для комфортной работы с любым современным программным синтезатором вам потребуется не просто компьютер, а современная быстродействующая рабочая станция с большим объемом оперативной памяти и процессором класса Pentium III 700 и выше. Причем практика показывает, что для реализации возможностей Reaktor в полной мере есть смысл использовать выделенную станцию (отдельный компьютер). Судите сами, обеспечение полифонии в 55 голосов только одного относительно простого инструмента-синтезатора на основе трех осцилляторов загружает Pentium III 700 на 80%. А ведь, как правило, интересно звучащие инструменты и ансамбли имеют гораздо более сложную структуру. Если просуммировать стоимость лицензионного ПО и соответствующего «железа», то получится, что любой профессиональный синтезатор/сэмплер/рабочая станция типа Korg Triton обойдется дешевле! Но, несмотря на это, рынок программных синтезаторов постоянно развивается. Их покупают по одной простой причине: при высоком качестве звучания они обладают практически безграничными возможностями. Reaktor — хорошая этому иллюстрация.
Синтезатор — электронныймузыкальный инструмент, синтезирующий звук при помощи одного или нескольких генераторов звуковых волн. Требуемое звучание достигается за счет изменения свойств электрического сигнала (в аналоговых синтезаторах) или же путём настройки параметров центрального процессора (в цифровых синтезаторах).
В зависимости от используемой технологии синтезаторы на несколько видов:
Аналоговые синтезаторы реализуют аддитивный и субтрактивный типы синтеза. Главная особенность аналоговых синтезаторов заключается в том, что звук генерируется и обрабатывается при помощи реальных электрических цепей. Часто соединение различных модулей синтеза производится при помощи специальных кабелей — patch-проводов, отсюда «патч» — обиходное название определенного тембра синтезатора среди музыкантов.
Основные достоинства аналоговых синтезаторов заключаются в том, что все изменения характера звучания во времени, например движение частоты срезания фильтра, происходят исключительно плавно (непрерывно). К недостаткам относятся высокий уровень шума, проблема нестабильности настройки в настоящее время преодолена. К наиболее известным, используемым в наше время аналоговым синтезаторам относятся: Mimimoog Voyager, LittlePhatty, Prophet ’08, Andromeda A6.
Виртуально-аналоговые синтезаторы представляют собой гибрид между аналоговым синтезатором и цифровым, неся в своем корпусе программную составляющую. Наиболее известные среди них: Access Virus TI, Nord Lead 2x, Nord Modular, DSI Poly Evolver.
Цифровые синтезаторы включают в себя собственно цифровые синтезаторы, а также их вариации: виртуальные синтезаторы-плагины/standalone и интерактивные синтезаторы. Они реализуют разнообразные типы синтеза. Для создания и воспроизведения исходных волновых форм, модификации звучания фильтрами, огибающими и т.д. используются цифровые устройства на базе одного центрального процессора и нескольких сопроцессоров.
По сути, цифровой синтезатор представляет собой узкоспециализированный компьютер. Наиболее передовые модели современных цифровых синтезаторов (Korg OASYS, Roland Fantom, Yamaha Tyros), подобно персональным компьютерам, позволяют обновлять операционную систему, содержат страничные меню, встроенные справочные файлы, скринсейверы и т.д.
Виртуальные синтезаторы являются разновидностью цифровых синтезаторов, однако они представляют собой особый вид программного обеспечения. Для создания звука используются центральный процессор и оперативная память персонального компьютера, а для вывода звука на воспроизводящее устройство используется звуковая карта ПК.
Виртуальные синтезаторы могут представлять собой как самостоятельные (stand-alone) программные продукты, так и плагины (plug-ins) определенного формата (VST, DXi, RTAS, TDM, LADSPA и т.д.), предназначенные для запуска внутри программы-хоста, обычно многоканального рекордера (Cubase VST, Cakewalk Sonar, Logic Pro, Pro Tools, Ardour и т.д.). Высокая доступность обуславливает растущую популярность виртуальных синтезаторов, в том числе моделей реально существующих инструментов (например, Native Pro53 — эмулятор синтезатора Prophet, Novation V-Station — эмулятор синтезатора Novation K-Station, Korg Legacy — эмуляторы синтезаторов Korg M1, Wavestation, PolySix, MS20 и т.д.).
>Интерактивные, или домашние синтезаторы также представляют собой разновидность цифровых синтезаторов, предназначенную специально для домашнего и салонного любительского музицирования, а также для интерактивного обучения музыке. Обычно в таких синтезаторах отсутствуют средства для развитого редактирования звука, включая регуляторы реального времени. Акцент делается на реалистичной имитации разнообразных оркестровых инструментов и использовании функции автоматического аккомпанемента. В этом случае для того, чтобы сыграть какое-либо музыкальное произведение, исполнителю не требуется программировать тембры или записывать партии в секвенсер – достаточно выбрать готовый тембр для мелодии и стиль для автоаккомпанемента.
Безусловно, управление подобными синтезаторами существенно проще, чем у профессиональных исполнительских моделей и зачастую доступно даже ребёнку. Многие синтезаторы подобного типа включают в себя обучающие игры типа «угадай ноту» или «угадай аккорд», сборники готовых музыкальных произведений для прослушивания и разучивания, функцию караоке с выводом на экран текста песни и т.д.
К данной категории синтезаторов относятся семейства Yamaha PSR, Casio CTK/WK, Roland E/VA/EXR и т.д.
В зависимости от способа генерации звуковых волн и их преобразования синтез звука можно классифицировать следующим образом:
Суммирующий (аддитивный) синтез, в котором используется принцип суперпозиции (наложения) нескольких волн простой (обычно синусоидальной) формы с различными частотами и амплитудами. По аналогии с электроорганами эти волны называются регистрами и обозначаются, как 16′ (тон на октаву ниже взятого), 8′ (исходный тон), 4′ (тон на октаву выше взятого) и т.д. (цифра представляет собой длину трубы соответствующего регистра органа в футах). В чистом виде встречается у электроорганов (Hammond, Farfisa) и их цифровых эмуляторов (Korg CX-3, Roland VK-8 и т.д.). Звучание инструмента тем богаче, чем большее количество регистров использовано в конструкции.
Вычитающий (субтрактивный) синтез, в котором исходная волна произвольной формы изменяет тембральную окраску при прохождении через разнообразные фильтры, генераторы огибающих, процессоры эффектов и т.д. Как подмножество данный тип синтеза широко применяется практически во всех современных моделях синтезаторов.
Операторный (FM, от англ. Frequency Modulation) синтез, в котором происходит взаимодействие (частотная модуляция и суммирование) нескольких волн простой формы.
Каждая волна вместе со своими характеристиками называется оператором, определенная конфигурация операторов составляет алгоритм. Чем большее количество операторов использовано в конструкции синтезатора, тем богаче становится звучание инструмента. Например, популярный по сей день синтезатор Yamaha DX-7 (1984 год выпуска) обладает 6 операторами, для конфигурирования которых служит 36 различных алгоритмов.
Физический синтез, в котором за счет использования мощных процессоров производится моделирование реальных физических процессов, протекающих в музыкальных инструментах того или иного типа. Например, для духовых свистковых инструментов типа флейты параметрами будут длина, профиль и диаметр трубы, скорость воздушного потока, материал корпуса; для струнных инструментов — размер корпуса, материал, длина и натяжение струн и т.д. Физический синтез используют такие инструменты, как Yamaha VL-1, Korg OASYS, Alesis Fusion и т.д.
Волновой (Wavetable, PCM) синтез, в котором звук создается за счет воспроизведения записанных ранее в память инструмента фрагментов звучания реальных музыкальных инструментов (сэмплов и мультисэмплов). Самый известный синтезатор в этой группе — Waldorf Wave, также прославившийся, как самый дорогой в мире синтезатор.
Гибридный синтез, в котором применяется та или иная комбинация различных способов синтеза звука, например «суммирующий + вычитающий», «волновой + вычитающий», «операторный + вычитающий» и т.д. Большинство современных инструментов создается именно на основе гибридного синтеза, так как он обладает очень мощными средствами для варьирования тембра в самых широких пределах.
Управление современного профессионального синтезатора представляет собой сложный процесс, связанный с контролем нескольких сотен, а то и тысяч, разнообразных параметров, отвечающих за те или иные аспекты звучания. Некоторые параметры могут управляться в реальном времени при помощи вращающихся регуляторов, колес, педалей, кнопок; другие параметры служат для заранее запрограммированного изменения во времени тех или иных характеристик. В связи с этим тембры (патчи) цифровых синтезаторов также часто называют программами.
Клавиатурный и динамический трекинг используются для отслеживания позиции и скорости нажатия на клавишу. Например, при движении от нижних клавиш к верхним тембр может плавно измениться от виолончели до флейты, причем при более энергичном нажатии на клавишу к общему звучанию добавляются литавры.
Огибающая применяется для непериодического изменения определенного параметра звучания. Обычно график огибающей представляет собой ломаную линию, состоящую из секций атаки (Attack), спада (Decay), поддержки (Sustain) и затухания (Release) (см. тж. ADSR-огибающая), однако в различных моделях синтезаторов встречаются как более простые (ADR) так и более сложные многостадийные огибающие. Общее количество огибающих представляет собой важную характеристику синтезатора.
Фильтр служит для вырезания из общего спектра сигнала определенной полосы частот. Зачастую фильтр также оборудуется резонансом, позволяющим резко усилить полосу частот на границе срезания. Изменение характеристик фильтра при помощи регуляторов реального времени, клавиатурного трекинга и/или огибающих позволяет получать исключительно разнообразные варианты звучания. Общее количество фильтров является важной характеристикой синтезатора.
Ring-модулятор позволяет модулировать исходный сигнал другим сигналом с определенной (фиксированной или плавающей) частотой, за счет чего происходит существенное обогащение гармониками. Название «Ring» (англ. «звонить») связано с тем, что данный узел часто служит для получения «колоколоподобного» звучания инструмента.
Генератор низких частот (Low Frequency Oscillator) применяется для периодического изменения определенных параметров звучания, например высоты, громкости, частоты срезания фильтра и т.д. В случае циклического изменения громкости создается эффект тремоло, изменение высоты создает эффект вибрато, периодическая смена частоты срезания фильтра называется эффектом «вау» (англ. «wah-wah»).
Обработка эффектами используется для окончательной доводки звучания. Современные синтезаторы обычно оснащаются достаточно большим количеством эффект-процессоров (например, Korg Karma — 8 процессоров, Roland Fantom — 6 процессоров и т.д.). Процессоры работают независимо друг от друга, хотя при желании их можно объединять в последовательные цепи. Современные эффект-процессоры реализуют большое количество пространственных (реверберация, задержка, эхо), модуляционных (фленжер, хорус, фазер) и иных (переусиление, сдвиг частоты, обогащение гармониками) алгоритмов эффектов.
Наиболее продвинутые модели обладают средствами для управления параметрами эффектов от регуляторов реального времени, огибающих, LFO и т.д.
Благодаря этим видео Вы можете ознакомиться с инструментом, посмотреть реальную игру на нём, послушать его звучание, ощутить специфику техники:
В энциклопедии пока ещё нет информации о том, где можно купить или заказать этот инструмент. Вы можете это изменить!
Процесс получения различных цветов с помощью нескольких основных (первичных) излучений или красок называется цветовым синтезом. Существует два принципиально различных метода цветового синтеза: аддитивный и субтрактивный синтезы.
В аддитивном синтезе смешиваются первичные излучения. В качестве первичных могут быть использованы два, три и более различных по цвету излучений, но наиболее распространен трехцветный аддитивный синтез. Первичные цвета и создающие их излучения называются основными. Основные излучения аддитивного синтеза — синие, зеленые и красные, т.е. излучения трех основных зон спектра. Аддитивный синтез цвета — воспроизведение цвета в результате оптического смешения излучений базовых цветов (красного, зелёного и синего — R, G, B). Используется в мониторах издательских систем при создании цветных изображений на экране, а также на экране телевизора.
Последовательное смешение или образование различных цветов при быстрой смене излучений вне глаза, например, на диске типа волчка или на экране цветного телевизора. При быстром вращении окрашенного в разные цвета диска цвета суммируются вследствие рассмотренных выше явлений инерционности зрения.
Пространственное смешение — это разновидность аддитивного способа.
Пространственное смешение основано на том, что глаз не различает очень близко расположенные друг к другу мелкие разноцветные участки, а воспринимает их слитно, как одно целое. Если эти мелкие участки имеют различную окраску, то мы видим только их обобщенный цвет — цвет аддитивной смеси.
Если ряд очень мелких разноцветных пятнышек, лежащих близко одно от другого, рассматривать на достаточно большом удалении, то эти пятнышки в отдельности зрительно не различаются. Вместо разноцветных мелких пятнышек мы видим одинаковые по цвету участки. Например, отдельные песчинки на берегу мы различаем лишь на близком расстоянии. Листы бумаги, слегка покрытые угольной пылью, на удалении мы видим серыми, не различая на них отдельных пылинок и просвечивающую между ними бумагу.
Смешение цветов мелких разноокрашенных участков с образованием единого для них цвета происходит по правилам аддитивного синтеза, т. е. оптическим смешением излучений. Это объясняется тем, что при взгляде на какой- либо предмет его изображение непрерывно перемещается по сетчатке глаза. Если отдельные цветные элементы малы в сравнении с непрерывными колебаниями глаза, то на одни и те же рецепторы попадают последовательные излучения от рядом расположенных разноцветных элементов.
Пространственное смешение разноцветных мелких окрашенных участков имеет место при синтезе цвета на оттисках высокой и офсетной (плоской) печати, на картинах живописи, особенно, направление «пуантилизм».
Французские художники изобрели в живописи подобный автотипному синтезу художественный прием, назвав его пуантилизмом.
Он был изобретен для создания ярких и чистых цветов на полотне.
Суть приема состоит в нанесении на холст четких раздельных мазков (в виде точек или мелких прямоугольников) чистых красок в расчете на их оптическое смешение в глазу зрителя, в отличие от механического смешения красок на палитре. Изобрел пуантилизм французский живописец Жорж Сёра на основе теории дополнительных цветов.
Было замечено, что оптическое смешение трех чистых основных цветов:
и пар дополнительных цветов:
дает значительно большую яркость, чем механическая смесь красок. Пуантилистическая техника помогла создать яркие, контрастные по колориту пейзажи П. Синьяку и тонко передающие нюансы цвета полотна Ж. Сёра, а также повысить декоративность картин многим их последователям, например итальянскому живописцу Дж. Балла.)
В субтрактивном синтезе новый цвет получают наложением одного на другой красочных слоев — желтого, пурпурного и голубого. Синие, зеленые и красные излучения поглощаются этими красками (т.е. последовательно вычитаются из белого света). Поэтому цвет окрашенного участка определяется теми излучениями, которые проходят через все три слоя и попадают в глаз наблюдателя.
Желтая, пурпурная и голубая краски — основные (первичные) для субтрактивного синтеза. Субтрактивный синтез цвета — получение цвета в результате вычитания отдельных спектральных составляющих из белого.
Такой синтез наблюдается при освещении белым светом цветного оттиска.
Свет падает на цветной участок; при этом часть его поглощается (вычитается) красочным слоем, а остальная часть, отражаясь, в виде окрашенного потока попадает в глаз наблюдателя. Этот синтез используется при смешении окрашенных сред, например, красок вне машины, для получения нужных цветов или оттенков на оттиске при печати дополнительной краской, при наложении слоев разных красок на оттиске в глубокой печати, а также при наложении разнокрасочных растровых элементов на оттиске в высокой и плоской печати.
Само название цветового синтеза указывает на принцип образования различных цветов.
Слово «аддитивный» — слагательный. Субтрактивный способ — вычитательный. При аддитивном синтезе цвета меняются от изменения соотношения интенсивности основных излучений, а при субтрактивном синтезе — от толщины слоев или концентрации в них красящих веществ.
Поэтому помимо понятия о первичных цветах и красках для характеристики синтеза вводят понятие о количестве первичных излучений или красок. Эти величины, которые характеризуют количества первичных излучений или основных красок, называют аддитивными или субтрактивными координатами цвета.
Аддитивные координаты цвета указывают на относительные мощности смешиваемых (слагаемых) излучений при аддитивном синтезе. Субтрактивные координаты цвета указывают на относительные количества желтой, пурпурной и голубой красок, которыми воспроизводятся все другие цвета на оттиске.
Как и в аддитивном, в субтрактивном синтезе новый цвет может быть образован меньшим или большим, чем три, числом основных красок. На практике для субтрактивного синтеза часто используют большее число красок. Например, к трем цветным добавляют четвертую — черную.
В цветных репродукциях, изготовленных способом высокой и плоской печати, образование цветов происходит путем изменения относительной площади мелких, не видимых невооруженным глазом растровых элементов, закрашенных желтой, пурпурной и голубой красками.
Цветовой синтез, при котором разные цвета на запечатанных поверхностях образуются изменением относительной площади закрашенных растровых элементов, называется автотипным (растровым) синтезом.
Автотипный синтез может быть однокрасочным, когда печать ведется с одной растровой печатной формы и на бумагу переносится только одна краска. Черно-белые иллюстрации, изготовленные способами высокой и плоской печати, — это однокрасочные изображения, полученные автотипным синтезом. Для изготовления цветных иллюстраций применяется иногда двухкрасочный автотипный синтез (дуплекс).
Чаще применяется трехкрасочный и четырехкрасочный синтез.
Наиболее распространен четырехкрасочный автотипный синтез, когда, помимо трех основных однокрасочных изображений, на бумагу наносится еще черно-белое изображение.
В некоторых случаях печать ведется и большим числом красок.
(В последнее время после 1995 г. практическое применение находит технология Hi — Fi.) Однако в основе всех видов автотипного синтеза лежит принцип смешения излучений, отраженных от мелких разноокрашенных участков. Поэтому для выяснения закономерности автотипного синтеза необходимо рассматривать процесс наложения красок с трех растровых изображений. При трехкрасочном автотипном синтезе на бумагу последовательно накладываются слои желтой, пурпурной и голубой красок.
Допустим, что первой печатается желтая краска. При нанесении пурпурной краски на бумаге запечатываются не только неокрашенные, но и уже окрашенные первой краской участки. Таким образом, на единице площади, ограниченной рядом расположенными линиями растровой решетки, получаются не только желтые и пурпурные однокрасочные участки, но также и двухкрасочные, полученные вследствие перекрывания некоторых из разноокрашенных растровых элементов.
В рассмотренном примере двухкрасочные участки в результате наложения на желтый слой пурпурной краски имеют красный цвет. При наложении третьего растрового изображения голубая краска ложится на желтые, пурпурные и красные участки, в результате образуются новые двухкрасочные участки синего и зеленого цвета, а также трехкрасочные черного цвета. Таким образом, цвета двухкрасочных и трехкрасочных участков образуются субтрактивным синтезом.
Краски для автотипного синтеза выбирают с тем расчетом, чтобы цвета при автотипном синтезе получались не только насыщенными, но и достаточно светлыми, яркими.
Таким образом, автотипный синтез цвета — это воспроизведение цвета в полиграфии на оттисках высокой и плоской печати. При автотипном синтезе цветное полутоновое изображение формируется разноцветными растровыми элементами (точками или микроштрихами). Растровые элементы отдельных печатных красок на оттиске имеют одинаковую светлоту, но различные размеры, частоты и формы, а также разный характер наложения (смешанный аддитивно-субтрактивный синтез цвета).
В процессе развития электроники совершенствовались методы и устройства генерации и обработки звуковых колебаний в электронных музыкальных инструментах. Большое внимание уделялось вопросам темброобразования как для более точной имитации звучания традиционных инструментов, так и в целях получения новых, необычных тембров. Рассмотрим основные методы синтеза.
Аддитивный (additive — сложение) метод, применявшийся еще в органе Хаммонда. Результирующий тембр формируется путем сложения нескольких исходных колебаний. При использовании в качестве исходных колебаний синусоидальных сигналов с кратными (отличающимися в целое число раз) частотами и регулируемыми амплитудами отдельных составляющих можно получить большое количество самых разнообразных тембров. Такая разновидность аддитивного метода называется гармоническим синтезом тембра.
Регистровый синтез (разновидность аддитивного). В этом случае в качестве исходных используют колебания более сложной формы, например, пилообразные или прямоугольные. И в том, и в другом случаях для точного воспроизведения звучания заданного музыкального инструмента требуется очень большое (теоретически бесконечно большое) число исходных колебаний. Чем меньше исходных колебаний, тем сильнее отличается синтезированный звук от звучания имитируемого инструмента. На практике оказывается, что даже при полутора-двух десятках исходных колебаний звучание синтезатора лишь в основном напоминает то, что хотелось получить. Это одна из особенностей психоакустического восприятия звука. Если будут опознаны хоть какие-нибудь характерные признаки знакомого музыкального инструмента, то в сознании произойдет подмена фактического звучания на воображаемое.
Субтрактивный метод (subtractive — вычитание). Сущность этого метода заключается в том, что новый тембр создается путем изменения соотношений между отдельными составляющими в спектре первоначального колебания. Реализуется этот метод в два этапа. Сначала формируются колебания, основные частоты которых соответствуют частотам нот. Главное требование к первоначальному колебанию сводится к тому, что оно должно иметь как можно более богато развитый тембр (иметь большое количество спектральных составляющих). На втором этапе с помощью частотных фильтров из первоначального колебания выделяют частотные составляющие, характерные для имитируемого музыкального инструмента. Этот метод также удобно реализовать на базе быстродействующих цифровых интегральных микросхем.
Таким образом, при синтезе звуков в электронных музыкальных инструментах аддитивный и субтрактивный методы мирно уживаются и дополняют друг друга.
Развитие технологии аналоговых интегральных микросхем позволило со временем реализовать отработанные методы синтеза, доступных как в отношении управляемости, так и в отношении стоимости. Приоритет в этой области принадлежит Р. Мугу, выпустившему в 1964 году первый такой синтезатор. Его основой стал генератор, управляемый напряжением, который способен формировать сигналы прямоугольной, пилообразной и синусоидальной формы. Различные варианты соединения таких генераторов и сложения их выходных сигналов позволили получить обширную палитру новых электронных звуков.
FM-аддитивный метод основан на частотной модуляции: изменении частоты сигнала в соответствии с законом изменения некоторого управляющего напряжения. Со временем было накоплено большое количество таких алгоритмов управления частотами генераторов Муга, которые представляли ценность в музыкальном отношении, и поэтому закладывались в блоки управления новых синтезаторов. В результате развития цифровой техники произошел естественный переход от аналоговых к цифровым формирователям колебаний, способным генерировать сигналы произвольной формы. Сами формирователи могут быть реализованы как аппаратно, так и программно, а форма генерируемого сигнала в виде цифрового алгоритма управления формирователями хранится в запоминающем устройстве. Возможность использования большого числа формирователей (порядка нескольких десятков), которые имеют независимое управление частотой колебаний и огибающей амплитуды (размаха колебаний) сигналов, для синтеза каждого голоса музыкального инструмента позволила говорить о переходе на качественно новый по сравнению с аналоговыми синтезаторами уровень. FM-синтез звука производится на основе использования нескольких генераторов звуковых частот при их взаимной модуляции. Совокупность генератора и схемы, управляющей этим генератором, принято называть оператором. Схема соединения операторов и параметры каждого оператора (частота, амплитуда и закон их изменения во времени) определяют тембр звучания. Количество операторов определяет максимальное число синтезируемых тембров. В операторе следует выделять два структурных элемента: частотный модулятор и генератор огибающей. Частотный модулятор определяет высоту тона, а генератор огибающей определяет относительно медленное изменение амплитуды колебания во времени и, тем самым, тембр звука. Звуковые колебания, формируемые различными музыкальными инструментами, имеют различные огибающие. Однако любую огибающую можно условно расчленить на несколько характерных фаз, которые принято называть: attack (атака), decay (спад), sustain (поддержка), release (освобождение) (рис. 5.1).
Рис. 6.1. Четыре фазы огибающей сигнала
Например, при нажатии на клавишу фортепиано сначала амплитуда колебаний быстро возрастает до максимального значения, затем несколько спадает, потом в течение некоторого времени остается практически постоянной и, наконец, колебания медленно затухают.
В более совершенных синтезаторах элементарный процесс извлечения звука состоит не из четырех, а из шести фаз (рис. 6.2).
Рис. 6.2. Шесть фаз огибающей сигнала
Это позволяет получить большее сходство синтезируемого звучания и его естественного образца. Неоспоримое достоинство FM-синтеза состоит в том, что на его основе можно получить несчетное количество электронных тембров. Немаловажно также то обстоятельство, что не требуется заранее записывать и хранить в памяти синтезируемые звуки. Достаточно хранить алгоритм их синтеза.
Сэмплеры (sampling — отбор образцов). Суть этого способа состоит в том, что для синтеза звука используются сгенерированные не в реальном времени, а заранее фрагменты, хранящиеся в памяти инструмента. Эти фрагменты могут быть получены путем записи в цифровой форме натуральных звуков. Синтезаторы, в которых воплощен такой принцип, называются сэмплерами, а образцы звучания — сэмплами. Процесс записи сэмплов принято называть оцифровкой или сэмплированием. В целях экономии необходимой памяти сэмплы могут храниться в виде нескольких фрагментов: фрагмента начала звука, фрагмента стационарной фазы и фрагмента завершения звука. Фазы начала и завершения звука при исполнении воспроизводятся без изменений, а стационарная фаза зацикливается на время нажатия клавиши. Сэмплы, записанные с помощью микрофонов, расположенных, например, вблизи рояля, до того, как оказаться в памяти синтезатора, подвергаются обработке. Запись очищают от посторонних звуков, подчеркивают стереоэффект и производят частотную коррекцию. Для одного и того же инструмента могут быть записаны сэмплы, относящиеся к различным приемам игры и соответствующие различной динамике звукоизвлечения, например: игра на рояле с использованием педали — и без нее, сильный удар по клавише — и мягкое касание. При воспроизведении различные динамические оттенки исполнения получают комбинированием этих сэмплов в различной пропорции. У рассматриваемого метода есть еще и другое название — волновой синтез. Закодированные наборы образцов хранимых звуков называют волновыми таблицами (Wave Table). Одна из основных проблем волнового синтеза состоит в том, что для хранения голосов инструментов требуется запоминающее устройство очень большого объема. Значительного сокращения необходимой памяти достигают за счет того, что запоминается звучание немногих нот. Формирование звучания остальных нот происходит путем изменения скорости воспроизведения сэмпла в той степени, каково отношение частоты извлекаемой ноты к частоте ноты, хранящейся в памяти. Допустим, исходный сэмпл оцифрован на частоте 44,1 кГц. Теперь, если мы будем воспроизводить его на удвоенной частоте дискретизации 88,2 кГц, т. е. вдвое быстрее, высота звука возрастет на октаву. Если же воспроизводить сигнал на пониженной частоте дискретизации, то высота звука соответственно уменьшится. Таким образом, если воспроизводить сэмпл на измененной соответствующим образом частоте дискретизации, в принципе можно получить звук любой высоты. Такой подход содержит неприятный момент. Смещение величины тактовой частоты и высоты звука будет изменять длительность атаки и скорость затухания сигнала. Изменится и сместится так же АЧХ звука, что приведет к его недостоверности. В WT-синтезаторах применяется другой способ изменения высоты звука. Оцифровывается несколько разных по высоте сигналов (сэмплов) реального музыкального инструмента, перекрывающих весь его частотный диапазон. Шаг по частоте должен быть достаточно мал, чтобы изменения тембра, связанные с конструктивными особенностями инструмента, при смещении частоты основного тона с помощью варьирования частоты дискретизации не были заметны на слух. В недорогих устройствах считается достаточной оцифровка через половину октавы. При генерации звука определенной высоты WT-синтезатор определяет, в каком частотном диапазоне находится звук, и использует соответствующие сэмплы из своей таблицы, корректируя их частоту основного тона точно до требуемой высоты, виртуально подстраивая частоту дискретизации.
Безусловным достоинством синтеза на основе таблицы волн является предельная реалистичность звучания классических инструментов и простота получения звука. Основой WT-синтеза является цифровой звук. В этом и заключается самое главное отличие WT- от FM-синтезаторов, у которых основой звука являются генераторы аналоговых колебаний строго определенных форм. Если при частотно-модуляционном синтезе (FM-синтезе) новые звучания получают за счет разнообразной обработки простейших стандартных колебаний, то основой волнового синтеза являются заранее записанные звуки традиционных музыкальных инструментов или звуки, сопровождающие различные процессы в природе и технике. С сэмплами можно делать все, что угодно. Можно оставить их такими, как есть, и сэмплер будет звучать голосами, почти неотличимыми от голосов инструментов-первоисточников. Можно подвергнуть сэмплы модуляции, фильтрации, воздействию эффектов и получить самые фантастические звуки. Сэмпл — это не что иное, как сохраненная в памяти синтезатора последовательность цифровых отсчетов, получившихся в результате аналого-цифрового преобразования звука музыкального инструмента. Технология, которая позволяет привязывать сэмплы к отдельным клавишам или к группам клавиш MIDI-клавиатуры, называется мультисэмплингом (Multi-Sampling) (рис. 6.3)
Рис. 6.3. Примеры использования технологий мультисэмплинга и многослойности
У реальных инструментов тембр зависит от высоты звука. Спектральная характеристика звука изменяет свою форму в зависимости от частоты. Например, у фортепиано тембр звука каждой из клавиш будет хоть немного, но все-таки отличаться даже от своих ближайших клавиш-соседей, не говоря уже о клавишах, расположенных предельно далеко друг от друга — в начале и в конце клавиатуры.
Ранее существовала проблема экономии памяти, но теперь можно записать звучание музыкального инструмента для каждой ноты, а полученные сэмплы привязать к каждой из клавиш MIDI-клавиатуры. В этом случае для размещения звукового банка потребуется значительный объем памяти. Такой подход может быть реализован в большинстве современных программных сэмплеров.
Лупы и грувы. Классический барабанный луп — это фрагмент барабанной партии, записанный в определенном темпе, длина которого кратна целому числу тактов. Если воспроизводить такой фрагмент в цикле (отсюда и название лупа (loop — петля), то создастся ощущение непрерывной игры. Лупы могут быть и не барабанными. Это может быть любой фрагмент музыки, зацикливание которого приведет к ощущению непрерывной игры. В настоящее время на дисках и в Internet можно найти множество коллекций лупов. Композиция будет звучать очень монотонно, если на всем ее протяжении будет звучать всего один луп. Поэтому лупы обычно поставляются наборами, в пределах которых все лупы записаны в одном темпе на одних инструментах, но соответствуют разным частям композиции. Например, вступлению, переходам и т. п. Совсем не обязательно лупы могут быть только барабанными. На практике приходится работать и с грувами — мелодическими лупами. Если барабанный луп достаточно подогнать по темпу, то грув нужно подгонять еще и по тону. Изменение тональности грува достигается путем изменения скорости воспроизведения его отдельных частей.
Дата добавления: 2017-06-02; просмотров: 459;
FILED UNDER : IT